IDENTITIES OF BERNOULLI NUMBERS AND POLYNOMIALS
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In the field of Laurent series Q((T)), the series B = T'/(eT — 1) is contained in

the formal power series ring Q[[T]]. The i-th Bernoulli number B,L-(") of order n is
defined by
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We write Bi(l) simply as B;. The i-th Bernoulli polynomial Bi(") (X) of order n is
defined by
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We are interested in identities involving Bernoulli numbers and polynomials,
often of order one, such as
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discovered by Euler. These identities are better understood through Bernoulli num-
bers and polynomials of higher orders. In this talk, algorithms will be provided to
produce identities including the following types.

Identity 1. Forn > 3,
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This generalization of Euler’s identity is given by R. Sitaramachandrarao and
B. Davis [8]. We obtain also other generalizations on sum of products of more
Bernoulli numbers by K. Dilcher [2], A. Sankarayanan [7], R. Sitaramachandrarao
and B. Davis [8], and W.-P. Zhang [9]. See also I-C. Huang and S.-Y. Huang [5].

Identity 2. Forn >4
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This identity was proved by H. Rademacher [6] using Eisenstein series and by M.
Eie [3] using Zeta functions. See also I-C. Huang and S.-Y. Huang [5].
Identity 3. Forn > 2,
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This identity was discovered M. Eie [3]. See also I-C. Huang and S.-Y. Huang [5].
We are able to compute the sum
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for given my,ma,--- ,ms and n. See [4] for the case m; = 2, my = 3, m3 = 5 and
my4 = 6.

Identity 4.

n
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This is a special case of the identities considered in T. Agoh and K. Dilcher [1],
which evaluates sums of the form Z?:o (7;) By, +iBmytn—i- Our method applies to
these sums as well as to

n
E ( . )Bm1+i1 "'Bmeris'
11,700 s

Cd1,02,00 1520
t1t+ig+ - tis=n
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