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Universality of a set of n-qubit quantum gates (that is, unitary transforma-
tions of C2n

) is a notion which reflects usefulness of the collection in building
circuits for quantum computing. A set of n-qubit quantum gates is called uni-
versal if there exists N0 ≥ n such that for every N ≥ N0 every N -qubit unitary
operation can be approximated with arbitrary precision by a circuit built of per-
mutations of the N qubits and of gates from the collection. In other words, the
permutations of the N qubits together with the gates should generate a dense
subgroup of the underlying projective unitary group. We remark that, using the
Kitaev–Solovay theorem (see e.g. [4] and also [6, 7] for an implementation), if
a gate set is universal then approximations of arbitrary unitary operations can
be built efficiently.

One can show [2] that if an n-qubit gate set is universal then the smallest N0

with the above property is at most 28n. The proof combines Jeandel’s density
criterion [3] based on Lie theory with a recent result of Guralnick and Tiep [1]
on invariants of finite linear groups and with Lazard’s bound [5] on regularity
of the Hilbert function of zero dimensional ideals.

In this talk we give an exposition of the proof by outlining an analogous
result for universality in the closely related model of reversible computing. (We
are indebted to E. Jeandel for drawing our attention to this analogy). We
also discuss some related open questions as well as certain experimental results
obtained using GAP and Macaulay 2.
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