
MANUAL OF GALCOHOM - A PROGRAM FOR COMPUTING

GALOIS COHOMOLOGY

1. Introduction

The purpose of this document is to provide a manual to the programs implement-
ing the algorithms for computing the Galois cohomology of real algebraic groups,
that are developed in [BG23].

The program is mainly written in the language of the computer algebra system
GAP4, [GAP]. However, for some computations involving number fields it uses
the system SageMath, [S09]. If necessary the latter system is called from GAP. The
communication from SageMath to GAP is done via a file that is written by SageMath
and read by GAP. The input to SageMath is sent directly by GAP, without writing
a file.

In order to describe what our programs do, we first give a very short introduction
to Galois cohomology over R.

1.1. Very short introduction to Galois cohomology over R. Here we consider
the Galois cohomology relative to the Galois group Gal(C/R). For an extensive
treatment we refer to [Serre97].

Let Γ = Gal(C/R) = {1, γ}, with γ2 = 1. Let G be a group on which Γ acts by
automorphisms. Let X be a set on which Γ acts. For g ∈ G, x ∈ X we denote their
images under γ by γg, γx. We also suppose that G acts on X and that this action
is Γ-equivariant: γg · γx = γ(g · x) for all g ∈ G, x ∈ X.

An element of G is called a cocycle if gγg = 1. (This is different from the usual
definition, but in this particular case it yields the same concept.) Two cocycles
g1, g2 are equivalent if there is an h ∈ G with g1 = h−1g2

γh. The first cohomology
set H1G is the set of equivalence classes of cocycles. For a cocycle g we denote its
equivalence class by [g] which thus lies in H1G.

Let x0 ∈ X be such that γx0 = x0. Let Y = G · x0 be its orbit. Let Zx0
= {g ∈

G | g · x0 = x0} be the stabilizer of x0. We have a natural map i∗ : H1Zx0
→ H1G

mapping the class of a cocycle z in Zx0
to its class in H1G. The kernel of this map

consists of all elements that are sent to the trivial class, so

ker i∗ = {[z] ∈ H1G | z is equivalent to 1 in G}.
By GΓ, Y Γ we denote the elements of G, Y respectively that are fixed under γ.

We now state a theorem that is central to the classification of the GΓ-orbits on XΓ.
For a proof see [Serre97, Section I.5.4, Corollary 1 of Proposition 36].

Theorem 1. The orbits of GΓ on Y Γ are in bijection with ker i∗. This bijection
is given as follows. Let [z] ∈ ker i∗, then there is a g ∈ G with z = g−1 γg and [z]
corresponds to the orbit of g · x0.

The program implements two main functions. The first takes as input a linear
algebraic group G ⊂ GL(n,C), defined over R, and outputs the H1G. The latter
is a GAP object, in which a list of cocycles whose classes form H1G is stored. The
second function takes a cocycle g ∈ G and the H1G and outputs an element h ∈ G
such that h−1gγh lies in the computed list of cocycles. We note that this also
provides a method for computing ker i∗ as above, and for a [z] ∈ ker i∗ to find
g ∈ G with g−1 γg = z.
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2. Installation (Linux)

The program comes in a gzipped tar file, galcohom.tar.gz. Unpacking it will
result in a directory being created (galcohom) in which all files are placed. It is of
course possible to put them into a different directory. However, it is necessary to
keep them all in the same directory.

The first step is to edit the files sqrt.gi and sagefct.sage. In the first file the
paths on lines 14 and 21 should be changed. Line 14 should have the command
that starts Sage. On line 21 should appear the path to the directory where all
the files are. More precisely, if the files are in /home/gauss/compfiles/galcohom,
then line 21 of the file should be

WriteLine( sage_proc, "load(\’/home/gauss/compfiles/galcohom/sagefct.sage\’)" );

In the file sagefct.sage the lines 8 and 45 should contain the path to the direc-
tory where all files are. More precisely, if the files are in /home/gauss/compfiles/galcohom,
then the lines 8 and 45 of sagefct.sage should be

file = open(’/home/gauss/compfiles/galcohom/tmp.g’,’w’)

The program is started by issuing from the GAP command line

Read("galcohom.g");

A good test to see whether the communication with SageMath works is to do

gap> a:= Sqroot(2);

Sqroot( 2 )

gap> b:= Sqroot( E(4)*One( SqrtField ) );

(-1/2-1/2*E(4))*Sqroot( 2 )

3. The field SqrtField

For a few steps in our algorithms it is necessary to work with n-th roots of field
elements. For this reason we work with what can be called a “dynamic” field, which
gets extended every time we need an n-th root not already lying in the field. For
this we have copied the implementation of the field SqrtField from the CoReLG
package of GAP. This field is an extension of Q containing the square root of every
integer. However, as said above, in our implementation it is a dynamic field. At
the start it is equal to Q(i), and it gets extended every time we need an n-th root
that does not already lie in the field. In other words, our field is an ever growing
radical tower. For deciding whether an n-th root lies in the field (and finding one
if it does), we use SageMath.

The main function for creating new n-th roots is

Sqroot( n, a )

Here n ≥ 2 is an integer, and a is an element of SqrtField (or a rational number).
This function returns an element of SqrtField whose n-th power is a.

Elements of SqrtField are represented as sums of products of roots. In the
printed version of an element, Sqroot( a ) means the square root of the element
a, whereas pRoot( n, a ) means the n-th root of the element a. Example:

gap> a:= Sqroot( 2 );

Sqroot( 2 )

gap> b:= Sqroot( 3, 1+a );

pRoot( 3,1 + Sqroot( 2 ) )

gap> b^3;

1 + Sqroot( 2 )

gap> b^2;

pRoot( 3,1 + Sqroot( 2 ) )^2

Fr conctructing some primitive roots of unity in SqrtField we have the function
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PRU( n )

which works for n in {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 20, 24, 40, 60, 120}. It returns
an element of SqrtField that is a primitive n-th root of unity. Example:

gap> z:= PRU(40);

(1/8+1/8*E(4))*Sqroot( 2 ) + (1/8+1/8*E(4))*Sqroot( 10 ) + (1/8+1/8*E(4))*Sqroot( 2 )*\

pRoot( 2,-10 + 2*Sqroot( 5 ) )

gap> z^40;

1

gap> z^10;

E(4)

4. Computing Galois cohomology

The main purpose of the program is the compute the first Galois cohomology
H1(G,R) of a linear algebraic group G ⊂ GL(n,C) defined over R. Currently we
only deal with the complex conjugation that is given by the complex conjugation
of the matrix entries.

We note that the identity component G◦ of G is completely determined by the
Lie algebra Lie(G) ⊂ gl(n,C). In our program the group G is defined by a list of
n × n-matrices that form a basis of the Lie algebra of Lie(G), along with a list of
representatives of the elements of the component group (so if the list is g1, . . . , gs
then G = g1G

◦ ∪ · · · ∪ gsG◦).
The program has two main functions. The first is

FirstGaloisCohomology( mats )

FirstGaloisCohomology( mats, reps )

Here mats is a list of matrices forming a basis of the Lie algebra of G, and reps

is a list of n× n-matrices with reresentatives of the component group. The output
is an object that in its printed form gives some information on the structure of the
group, and whose only attribute is Cocycles, which gives a list of representatives
of the classes in H1(G,R).

During its execution the program prints several messages to the screen. These are
probably of interest only to the programmer. In order to suppress these messages
it is possible to issue the command

printstuff:= false;;

Example:

gap> L:= SimpleLieAlgebra("A",1,Rationals);;

gap> mats:= List( Basis(L), x -> AdjointMatrix( Basis(L), x ) );;

gap> h1:= FirstGaloisCohomology( mats );

H1connected: start computing subgroup of Weyl group...

H1connected: done subgroup...

H1( A_1, connected; 2 cocycles )

gap> Display( Cocycles( h1 )[1] );

[ [ 1, 0, 0 ],

[ 0, 1, 0 ],

[ 0, 0, 1 ] ]

gap> Display( Cocycles( h1 )[2] );

[ [ 0, -1/4, 0 ],

[ -4, 0, 0 ],

[ 0, 0, -1 ] ]

For an example with a non-connected group we consider the Lie algebra spanned
by
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

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,



0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,

along with

diag(2 2 −1 −1 −1 −1 −1 −1 2
), diag(−1 −1 1 1 0 0 0 0 0

), diag(0 −1 1 0 1 0 −1 0 0
).

There are two components. A representative of the non-identity component is

Q =



0 −1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 −1


.

We now do the following computation.

gap> L:= [ [ [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, -1, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ],

> [ [ 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, -1, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ],

> [ [ 2, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 2, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, -1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, -1, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, -1, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, -1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, -1, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 2 ] ],

> [ [ -1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, -1, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ],

> [ [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, -1, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, -1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

> [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ] ];;

gap> Q:= [[0 , -1 , 0 , 0 , 0 , 0 , 0 , 0 , 0],

> [-1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0],

> [0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0],

> [0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0],

> [0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0],

> [0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0],

> [0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0],

> [0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0],

> [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1]];;

gap> printstuff:= false;;
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gap> FirstGaloisCohomology( L, [ Q^0, Q ] );

H1( A_1.T_2, 2 components; 3 cocycles )

gap> Cocycles( h1 )[3];

[ [ 0, 0, 0, -E(4), 0, 0, 0, 0, 0 ], [ 0, 0, -E(4), 0, 0, 0, 0, 0, 0 ],

[ 0, -E(4), 0, 0, 0, 0, 0, 0, 0 ], [ -E(4), 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 0, 0, -1, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0, 0 ],

[ 0, 0, 0, 0, -1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, 0 ],

[ 0, 0, 0, 0, 0, 0, 0, 0, -1 ] ]

The second main function is

NormalizeCocycle( H1, c )

Here H1 is a Galois cohomology set of a linear algebraic group G computed with
FirstGaloisCohomology, and c is a cocycle in G. This function returns an h ∈ G
such that h−1cγh lies in the list of cocycles of H1. In the following example we
compute the first Galois cohomology of SL(9,C) (which is known to be trivial) and
then we find an h ∈ SL(9,C) such that h−1cγh = 1, where c is the cocycle that we
computed in the previous example.

gap> K:= SimpleLieAlgebra("A",8,Rationals);;

gap> V:= HighestWeightModule(K,[1,0,0,0,0,0,0,0]);;

gap> mats:= List( Basis(K), x -> MatrixOfAction(Basis(V),x) );;

gap> h1sl9:= FirstGaloisCohomology( mats );

H1( A_8, connected; 1 cocycles )

gap> c:= Cocycles( h1 )[3];;

gap> h:= NormalizeCocycle( h1sl9, c );

[ [ E(4), 0, 0, -1, 0, 0, 0, 0, 0 ],

[ 0, 5/8+3/8*E(4), -3/8-5/8*E(4), 0, 0, 0, 0, 0, 0 ],

[ 0, -3/8-5/8*E(4), 5/8+3/8*E(4), 0, 0, 0, 0, 0, 0 ],

[ -1, 0, 0, E(4), 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 1/2+1/2*E(4), 0, -1/2+1/2*E(4), 0, 0 ],

[ 0, 0, 0, 0, 0, 1, 0, 0, 0 ],

[ 0, 0, 0, 0, -1/2+1/2*E(4), 0, 1/2+1/2*E(4), 0, 0 ],

[ 0, 0, 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, E(4) ] ]

gap> h^-1*c*ComplexConjugate(h);

[ [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0 ],

[ 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0, 0 ],

[ 0, 0, 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, 0 ],

[ 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ]
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