
Riemannian foliations of symmetric spaces

Tommy Murphy

June 27, 2012

Tommy Murphy Riemannian foliations of symmetric spaces



A foliation F on M is said to be Riemannian if a geodesic is
orthogonal to all or none of the leaves L of F that it meets.

Meta-question 1 classify the Riemannian foliations whose
leaves satisfy a “natural” geometric property.
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Submanifolds of Symmetric spaces

M a symmetric space : ∇ R = 0.

In any category, classify sub-objects

Let ξ denote a unit normal vector field to a submanifold
M ⊂ M. The eigenvalues of the shape operator
AξX := −(∇X ξ)T are the principal curvatures λi .

Meta-question 2 Classify submanifolds whose principal
curvatures satisfy some “natural” condition

λi = 0 is totally geodesic.

Cartan: totally geodesic ↔ Lie triple system.

Explicit classification if rank(M) ≤ 2.

Tommy Murphy Riemannian foliations of symmetric spaces



Submanifolds of Symmetric spaces

M a symmetric space : ∇ R = 0.

In any category, classify sub-objects

Let ξ denote a unit normal vector field to a submanifold
M ⊂ M. The eigenvalues of the shape operator
AξX := −(∇X ξ)T are the principal curvatures λi .

Meta-question 2 Classify submanifolds whose principal
curvatures satisfy some “natural” condition

λi = 0 is totally geodesic.

Cartan: totally geodesic ↔ Lie triple system.

Explicit classification if rank(M) ≤ 2.

Tommy Murphy Riemannian foliations of symmetric spaces



Submanifolds of Symmetric spaces

M a symmetric space : ∇ R = 0.

In any category, classify sub-objects

Let ξ denote a unit normal vector field to a submanifold
M ⊂ M. The eigenvalues of the shape operator
AξX := −(∇X ξ)T are the principal curvatures λi .

Meta-question 2 Classify submanifolds whose principal
curvatures satisfy some “natural” condition

λi = 0 is totally geodesic.

Cartan: totally geodesic ↔ Lie triple system.

Explicit classification if rank(M) ≤ 2.

Tommy Murphy Riemannian foliations of symmetric spaces



Submanifolds of Symmetric spaces

M a symmetric space : ∇ R = 0.

In any category, classify sub-objects

Let ξ denote a unit normal vector field to a submanifold
M ⊂ M. The eigenvalues of the shape operator
AξX := −(∇X ξ)T are the principal curvatures λi .

Meta-question 2 Classify submanifolds whose principal
curvatures satisfy some “natural” condition

λi = 0 is totally geodesic.

Cartan: totally geodesic ↔ Lie triple system.

Explicit classification if rank(M) ≤ 2.

Tommy Murphy Riemannian foliations of symmetric spaces



Submanifolds of Symmetric spaces

M a symmetric space : ∇ R = 0.

In any category, classify sub-objects

Let ξ denote a unit normal vector field to a submanifold
M ⊂ M. The eigenvalues of the shape operator
AξX := −(∇X ξ)T are the principal curvatures λi .

Meta-question 2 Classify submanifolds whose principal
curvatures satisfy some “natural” condition

λi = 0 is totally geodesic.

Cartan: totally geodesic ↔ Lie triple system.

Explicit classification if rank(M) ≤ 2.

Tommy Murphy Riemannian foliations of symmetric spaces



Submanifolds of Symmetric spaces

M a symmetric space : ∇ R = 0.

In any category, classify sub-objects

Let ξ denote a unit normal vector field to a submanifold
M ⊂ M. The eigenvalues of the shape operator
AξX := −(∇X ξ)T are the principal curvatures λi .

Meta-question 2 Classify submanifolds whose principal
curvatures satisfy some “natural” condition

λi = 0 is totally geodesic.

Cartan: totally geodesic ↔ Lie triple system.

Explicit classification if rank(M) ≤ 2.

Tommy Murphy Riemannian foliations of symmetric spaces



Submanifolds of Symmetric spaces

M a symmetric space : ∇ R = 0.

In any category, classify sub-objects

Let ξ denote a unit normal vector field to a submanifold
M ⊂ M. The eigenvalues of the shape operator
AξX := −(∇X ξ)T are the principal curvatures λi .

Meta-question 2 Classify submanifolds whose principal
curvatures satisfy some “natural” condition

λi = 0 is totally geodesic.

Cartan: totally geodesic ↔ Lie triple system.

Explicit classification if rank(M) ≤ 2.

Tommy Murphy Riemannian foliations of symmetric spaces



Hypersurfaces of Symmetric spaces

Theorem

(Levi-Civita, Somigiliana, Segre) A hypersurface M ⊂ Rn has
constant principal curvatures if and only if it is locally isometric to
either a hypersphere, a cylinder,or a plane.

M is said to be homogeneous if a subgroup of Isom(M) acts
transitively on M.

Inhomogeneous examples?
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Cartan tried and failed to classify hypersurfaces with constant
principal curvatures in spheres.

motivated by trying to classify isoparametric hypersurfaces:

Definition

A function f : M → R is isoparametric if ‖df ‖2 = a ◦ f , and
∆(f ) = b ◦ f for smooth functions a, b. The level sets of f are
isoparametric hypersurfaces

Arose in the study of waves moving through a medium.

Theorem

(Cartan) A hypersurface of a space form is isoparametric if and
only if it has constant principal curvatures.

Cartan: M is isoparametric ⇔ all parallel hypersurfaces have
constant mean curvatures.
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Cartan achieved their classification when g = ‖σAξ
‖ ≤ 3.

Theorem

(Münzner) For an isoparametric hypersurface M ⊂ Sn,
g ∈ {1, 2, 3, 4, 6}.

For g = 4 inhomogeneous examples of FKM type arising from
Clifford systems.

Wang: Under the Hopf fibration inhomogeneous isoparametric
hypersurfaces project to isoparametric hypersurfaces with
nonconstant principal curvatures.
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Curvature-adapted submanifolds

Kξ = R(·, ξ)ξ denotes the normal Jacobi operator.

M ⊂ M is said to be curvature-adapted if

1 Kξ : TpM → TpM, and
2 Kξ ◦ Aξ = Aξ ◦ Kξ.

1 Every submanifold of a space form.
2 Complex submanifolds of CPn and CHn.
3 Every Hermann action of a symmetric space.

Every tube around a curvature-adapted submanifold is
curvature-adapted.
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Theorem

(M.) Let M be a curvature-adapted hypersurface of a compact
symmetric space. Then M is isoparametric if, and only if, M has
constant principal curvatures and the eigenvalues of Kξ(E ) are
constant.

For spheres we recover Cartan’s theorem.

Proof uses Jacobi field theory and Laurent series for the
principal curvature functions.

Theorem

(M.) Let M ⊂ OP2 be a complete curvature-adapted hypersurface.
Then it is isoparametric if, and only if it is homogeneous.

Tommy Murphy Riemannian foliations of symmetric spaces



Theorem

(M.) Let M be a curvature-adapted hypersurface of a compact
symmetric space. Then M is isoparametric if, and only if, M has
constant principal curvatures and the eigenvalues of Kξ(E ) are
constant.

For spheres we recover Cartan’s theorem.

Proof uses Jacobi field theory and Laurent series for the
principal curvature functions.

Theorem

(M.) Let M ⊂ OP2 be a complete curvature-adapted hypersurface.
Then it is isoparametric if, and only if it is homogeneous.

Tommy Murphy Riemannian foliations of symmetric spaces



Theorem

(M.) Let M be a curvature-adapted hypersurface of a compact
symmetric space. Then M is isoparametric if, and only if, M has
constant principal curvatures and the eigenvalues of Kξ(E ) are
constant.

For spheres we recover Cartan’s theorem.

Proof uses Jacobi field theory and Laurent series for the
principal curvature functions.

Theorem

(M.) Let M ⊂ OP2 be a complete curvature-adapted hypersurface.
Then it is isoparametric if, and only if it is homogeneous.

Tommy Murphy Riemannian foliations of symmetric spaces



Theorem

(M.) Let M be a curvature-adapted hypersurface of a compact
symmetric space. Then M is isoparametric if, and only if, M has
constant principal curvatures and the eigenvalues of Kξ(E ) are
constant.

For spheres we recover Cartan’s theorem.

Proof uses Jacobi field theory and Laurent series for the
principal curvature functions.

Theorem

(M.) Let M ⊂ OP2 be a complete curvature-adapted hypersurface.
Then it is isoparametric if, and only if it is homogeneous.

Tommy Murphy Riemannian foliations of symmetric spaces



Theorem

(M.) Let M be a curvature-adapted hypersurface of a compact
symmetric space. Then M is isoparametric if, and only if, M has
constant principal curvatures and the eigenvalues of Kξ(E ) are
constant.

For spheres we recover Cartan’s theorem.

Proof uses Jacobi field theory and Laurent series for the
principal curvature functions.

Theorem

(M.) Let M ⊂ OP2 be a complete curvature-adapted hypersurface.
Then it is isoparametric if, and only if it is homogeneous.

Tommy Murphy Riemannian foliations of symmetric spaces



Fundamental techniques are given by using the Riccati
equation for the tube around M ⊂ M:

(Aξ)′(r) = A2
ξ + Kξ

Curvature-adapted implies this matrix-valued differential
equation simplifies to a family of ODE’s

(λ′i ) = λ2
i + κi

Can calculate the principal curvatures of tubes around M by
using Jacobi field theory

Focal point: principal curvatures developing singularities.
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Let M ⊂ Cn be complex, γ be the total Chern form and F be
the Kähler form.

Theorem

(Gray) Vol(TM(r)) = 1
n!

∫
M γ ∧ (πr2 + F )n

For Md ⊂ CPn,

Vol(TMd
(r)) = (π)n+1

(n+1)!

(
1− (1− d .Sin2(2r))n+1

)
.

Motivated by this work, Gray established the formula

minfocCPn(Mn−1
d ) = r0 ≤ ArcSin(

1√
d

).
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Theorem

(M.) A complex submanifold M arises as an exceptional leaf of any
Riemannian foliation F2n−1 on CPn if, and only if, M is isometric
to

1 a totally geodesic Pk ⊂ Pn for some k ∈ {0, . . . , n − 1},
2 the complex quadric

Qn−1 = {[z ] ∈ Pn : z2
0 + · · ·+ z2

n = 0} ⊂ Pn,

3 the Segre embedding of P1 × Pk into P2k+1,

4 the Plücker embedding of the complex Grassmann manifold
G2(C5) into P9, or

5 the half spin embedding of SO(10)/U(5) in P15.

In other words, F is induced by a cohomogeneity one action.
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Complex Riemannian foliations

Good examples of Riemannian foliations: leaves of
π : M → B.

Letting M be Kähler, when are the leaves of π complex
submanifolds?

Twistor fibration: π : CP2n+1 → HPn gives an example.

Others?
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Theorem

(M.) Let F be a singular Riemannian foliation of an irreducible
closed Kähler manifold. If it is complex, it is totally geodesic.

Idea of the proof: use infinitesimal Riemannian foliation TxF .

At a singular point TxF = TxF triv ⊕ TxFess

TxFess is an isoparametric foliation of Euclidean space →
homogeneous.
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Theorem

(M.-Nagy) Let F be a Riemannian foliation of an open subset
O ⊂ CPn. If it is complex, it is FTw |O.

We conjecture that the twistor fibration is the unique complex
Riemannian foliation of a Hermitian symmetric space

Theorem

(M.-Nagy) Let F be a complex Riemannian foliation of a closed
irreducible Hermitian symmetric space M. Then rank(M) ≤ 3, and
the leaves of F are totally geodesic CP1 ⊂ M.
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