Maximal abelian Borel stable subspaces and the CDSW conjecture for symmetric spaces

Paolo Papi

Sapienza Università di Roma

joint work with Paola Cellini, Pierluigi Möseneder and Marco Pasquali

The main problem

 $\mathfrak g$ finite dimensional semisimple complex Lie algebra σ indecomposable involution of $\mathfrak g$

 $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ eigenspace decomposition

3 N

The main problem

 \mathfrak{g} finite dimensional semisimple complex Lie algebra σ indecomposable involution of \mathfrak{g} $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ eigenspace decomposition Special cases: *adjoint case:* $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{k}$, \mathfrak{k} simple, σ flip. *graded case:* \mathfrak{g} simple.

3 b 4 3

The main problem

 \mathfrak{g} finite dimensional semisimple complex Lie algebra σ indecomposable involution of \mathfrak{g} $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ eigenspace decomposition Special cases: *adjoint case:* $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{k}$, \mathfrak{k} simple, σ flip. *graded case:* \mathfrak{g} simple.

Problem

Fix a Borel subalgebra $\mathfrak{b}_0 \subset \mathfrak{g}_0$. Find the maximal dimension of a \mathfrak{b}_0 -stable abelian subalgebra of \mathfrak{g}_1 .

It turned out that it was more natural to try solving the following more general problem.

Problem'

Find the poset structure of certain special posets $\mathcal{I}_{\alpha,\mu}$ of \mathfrak{b}_0 -stable abelian subalgebra of \mathfrak{g}_1 .

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The CDSW conjecture

Let \mathfrak{g} be simple. Consider the \mathfrak{g} – map $c: \mathfrak{g} \to \bigwedge^2 \mathfrak{g}, c(x) = \sum_{i=1}^{\dim \mathfrak{g}} [x, x_i] \wedge x^i$, where $\{x_i\}, \{x^i\}$ are a pair of dual bases w.r.t. the Killing form of \mathfrak{g} . Set $R = \bigwedge (\mathfrak{g} \oplus \mathfrak{g})$. Using c, can define three \mathfrak{g} -maps with target R,

$$c_1:\mathfrak{g}
ightarrow \bigwedge^2\mathfrak{g}\otimes 1,\ c_2:\mathfrak{g}
ightarrow 1\otimes \bigwedge^2\mathfrak{g},\ c_3:\mathfrak{g}
ightarrow \mathfrak{g}\otimes \mathfrak{g}.$$

Define

$$B = R/\langle Im(c_1), Im(c_2) \rangle, \quad A = R/\langle Im(c_1), Im(c_2).Im(c_3) \rangle.$$

Cachazo-Douglas-Seiberg-Witten conjecture

If S is the image in A of $\sum_i x_i \otimes x^i$, then $A^{\mathfrak{g}}$ is a truncated polynomial algebra of dimension h^{\vee} , h^{\vee} being the dual Coxeter number of \mathfrak{g} .

Kumar has version of the conjecture for infinitesimal symmetric spaces $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$. Just mimic the above construction using the $\mathfrak{g}_0 - map \ \tilde{c} : \mathfrak{g}_0 \to \bigwedge^2 \mathfrak{g}_1, \ \tilde{c}(x) = \sum_{i=1}^{\dim \mathfrak{g}} [x, x_i] \land x^i$, where $\{x_i\}, \{x^i\}$ are a pair of dual bases of \mathfrak{g}_1 . Correspondingly, set $\tilde{A} = \bigwedge(\mathfrak{g}_1 \oplus \mathfrak{g}_1) / \langle Im(\tilde{c}_1), Im(\tilde{c}_2).Im(\tilde{c}_3) \rangle$ and $\tilde{S} = \sum_{i=1}^{\dim \mathfrak{g}_1} x_i \otimes x^i$

Proposition

If \mathfrak{g}_1 is irreducible as a \mathfrak{g}_0 -module, then $\widetilde{A}^{\mathfrak{g}}$ is a truncated polynomial algebra generated by \widetilde{S} .

Recall the special posets $\mathcal{I}_{\alpha,\mu}$ which appeared (undefined!) a few slides ago. We prove that they have minimum.

Speculation

$$\dim \tilde{A}^{\mathfrak{g}} = \mathsf{nilpotency\ class\ of}\ \tilde{S} = \min_{\alpha,\mu} (\dim\min \mathcal{I}_{\alpha,\mu}).$$

- 4 同 6 4 日 6 4 日 6

Recall the special posets $\mathcal{I}_{\alpha,\mu}$ which appeared (undefined!) a few slides ago. We prove that they have minimum.

Speculation dim $\tilde{A}^{\mathfrak{g}}$ = nilpotency class of $\tilde{S} = \min_{\alpha,\mu} (\dim \min \mathcal{I}_{\alpha,\mu}).$

The above statement turns out to be true

- in the adjoint case, where it reduces to the CDSW conjecture;
- in the graded case with $\mathfrak{g}_0, \mathfrak{g}_1$ simple, where it reduces to a conjecture of Kumar;
- for any g, σ with g₁ irreducible such that dim g₁ ≤ 16 (MAGMA computations, done with the help of John Cannon).

直 ト イヨ ト イヨ ト

Schur 1905: There exist at most ⌊N²/4 ⌋ + 1 linearly independent commuting matrices in gl(N).

- Schur 1905: There exist at most ⌊N²/4 ⌋ + 1 linearly independent commuting matrices in gl(N).
- *Malcev 1945*: Maximal dimension of commutative subalgebras of any simple Lie algebra (case by case calculations).

- Schur 1905: There exist at most ⌊N²/4 ⌋ + 1 linearly independent commuting matrices in gl(N).
- *Malcev 1945*: Maximal dimension of commutative subalgebras of any simple Lie algebra (case by case calculations).
- *Kostant 1965*: Link between commutative subalgebras and eigenvalues of a Casimir operator.

- Schur 1905: There exist at most ⌊N²/4 ⌋ + 1 linearly independent commuting matrices in gl(N).
- *Malcev 1945*: Maximal dimension of commutative subalgebras of any simple Lie algebra (case by case calculations).
- *Kostant 1965*: Link between commutative subalgebras and eigenvalues of a Casimir operator.
- Peterson 1999: The abelian ideals of a Borel subalgebra of g are 2^{rank(g)}.

- Schur 1905: There exist at most ⌊N²/4 ⌋ + 1 linearly independent commuting matrices in gl(N).
- *Malcev 1945*: Maximal dimension of commutative subalgebras of any simple Lie algebra (case by case calculations).
- *Kostant 1965*: Link between commutative subalgebras and eigenvalues of a Casimir operator.
- Peterson 1999: The abelian ideals of a Borel subalgebra of g are 2^{rank(g)}.
- *Panyushev 2003*: Natural bijection between maximal abelian ideals and long simple roots.

- Schur 1905: There exist at most ⌊N²/4 ⌋ + 1 linearly independent commuting matrices in gl(N).
- *Malcev 1945*: Maximal dimension of commutative subalgebras of any simple Lie algebra (case by case calculations).
- *Kostant 1965*: Link between commutative subalgebras and eigenvalues of a Casimir operator.
- Peterson 1999: The abelian ideals of a Borel subalgebra of g are 2^{rank(g)}.
- *Panyushev 2003*: Natural bijection between maximal abelian ideals and long simple roots.
- Suter 2004: conceptual approach to Malcev's results.

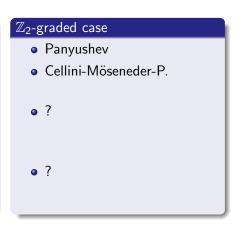
- Schur 1905: There exist at most ⌊N²/4 ⌋ + 1 linearly independent commuting matrices in gl(N).
- *Malcev 1945*: Maximal dimension of commutative subalgebras of any simple Lie algebra (case by case calculations).
- *Kostant 1965*: Link between commutative subalgebras and eigenvalues of a Casimir operator.
- Peterson 1999: The abelian ideals of a Borel subalgebra of g are 2^{rank(g)}.
- *Panyushev 2003*: Natural bijection between maximal abelian ideals and long simple roots.
- Suter 2004: conceptual approach to Malcev's results.

Abelian Case

- Kostant's Theorem
- Peterson's Theorem
- Panyushev's bijection between maximal abelian ideals and long simple roots
- Suter's formula on the dimension of maximal elements

Abelian Case

- Kostant's Theorem
- Peterson's Theorem
- Panyushev's bijection between maximal abelian ideals and long simple roots
- Suter's formula on the dimension of maximal elements



Notation

If $\mathfrak{a} = \oplus_{i=1}^{k} \mathbb{C} v_i$ is an abelian subalgebra of \mathfrak{g} , set

$$v_{\mathfrak{a}} = v_1 \wedge \ldots \wedge v_k \in \bigwedge^{\kappa} \mathfrak{g}.$$

伺 ト く ヨ ト く ヨ ト

<u>Notation</u>

If $\mathfrak{a} = \oplus_{i=1}^k \mathbb{C} v_i$ is an abelian subalgebra of \mathfrak{g} , set

$$v_{\mathfrak{a}} = v_1 \wedge \ldots \wedge v_k \in \bigwedge^k \mathfrak{g}.$$

- C Casimir element (w.r.t. the Killing form \mathfrak{g}).
- m_k is the maximal eigenvalue of \mathcal{C} on $\bigwedge^k \mathfrak{g}$
- M_k eigenspace of C on $\bigwedge^k \mathfrak{g}$ of eigenvalue k
- $A_k = Span(v_a \mid a \text{ abelian}, \dim(a) = k)$

 m_k is the maximal eigenvalue of C on $\bigwedge^k \mathfrak{g}$ M_k eigenspace of C on $\bigwedge^k \mathfrak{g}$ of eigenvalue k $A_k = Span(v_a \mid \mathfrak{a} \text{ abelian}, \dim(\mathfrak{a}) = k)$

Theorem (Kostant 1965)

$$\bullet \ m_k \leq k, \ \text{and} \ m_k = k \ \text{iff} \ A_k \neq \emptyset$$

A := ∑_k A_k is a multiplicity-free g-module. Its highest weights are parametrized by the set Ab of abelian ideals of a Borel subalgebra.

 $(\mathfrak{g}) = A \oplus \langle Im(c) \rangle.$

 \mathfrak{i} abelian ideal of \mathfrak{b} .

$$\mathfrak{i} = igoplus_{lpha \in \mathbf{\Phi}_{\mathfrak{i}}} \mathfrak{g}_{lpha}$$

 $\Phi_i \subset \Delta^+$ "abelian "dual order ideal of the root poset.

글 🖌 🖌 글 🕨

 $\mathfrak i$ abelian ideal of $\mathfrak b.$

$$\mathfrak{i} = \bigoplus_{lpha \in \Phi_{\mathfrak{i}}} \mathfrak{g}_{lpha}$$

 $\Phi_i \subset \Delta^+$ "abelian "dual order ideal of the root poset. Set

$$\langle \mathfrak{i} \rangle = \sum_{\alpha \in \Phi_{\mathfrak{i}}} \alpha.$$

Then

$$A\cong\bigoplus_{\mathfrak{i}}L(\langle\mathfrak{i}\rangle)$$

∃ → < ∃ →</p>

 \mathfrak{i} abelian ideal of \mathfrak{b} .

$$\mathfrak{i} = \bigoplus_{lpha \in \mathbf{\Phi}_{\mathfrak{i}}} \mathfrak{g}_{lpha}$$

 $\Phi_i \subset \Delta^+$ "abelian "dual order ideal of the root poset.

Theorem (Peterson 1998)

The cardinality of the set of abelian ideals of \mathfrak{b} is $2^{\operatorname{rank}(\mathfrak{g})}$.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 \mathfrak{i} abelian ideal of \mathfrak{b} .

$$\mathfrak{i} = igoplus_{lpha \in \Phi_{\mathfrak{i}}} \mathfrak{g}_{lpha}$$

 $\Phi_i \subset \Delta^+$ "abelian "dual order ideal of the root poset.

Theorem (Peterson 1998)

The cardinality of the set of abelian ideals of \mathfrak{b} is $2^{\operatorname{rank}(\mathfrak{g})}$.

Main idea

Bijection

$$\Phi_{\mathfrak{i}} \subset \Delta^{+} \longleftrightarrow w_{\mathfrak{i}} \in \widehat{W} \text{ s.t. } N(w_{\mathfrak{i}}) = \{\delta - \alpha \mid \alpha \in \Phi_{\mathfrak{i}}\}$$

where $N(w) = \{ \alpha \in \widehat{\Delta}^+ \mid w^{-1}(\alpha) \in -\widehat{\Delta}^+ \}.$

伺 ト イ ヨ ト イ ヨ

Proof of Peterson Theorem (Cellini-P.).

$$C_1 \text{ fundamental alcove,} \\ \mathcal{W}^{ab} = \Big\{ w \in \widehat{W} \mid N(w) = \{ \delta - \alpha \mid \alpha \in \mathfrak{i} \}, \mathfrak{i} \in \mathcal{A}b \Big\}.$$

We prove that

$$w \in \mathcal{W}^{ab} \iff wC_1 \subset 2C_1$$

· < E > < E >

A 10

Proof of Peterson Theorem (Cellini-P.).

$$C_1 \text{ fundamental alcove,} \\ \mathcal{W}^{ab} = \Big\{ w \in \widehat{W} \mid N(w) = \{ \delta - \alpha \mid \alpha \in \mathfrak{i} \}, \mathfrak{i} \in \mathcal{A}b \Big\}. \\ \text{We prove that}$$

$$w \in \mathcal{W}^{ab} \iff wC_1 \subset 2C_1$$

In particular

$$2C_1 = \bigcup_{w \in \mathcal{W}^{ab}} wC_1$$

御 と く ヨ と く ヨ と

э

<u>Fact</u> If $w \in \mathcal{W}^{ab}$, then $w^{-1}(-\theta + 2\delta) \in \Delta_{\ell}^+$.

A B + A B +

A D

3

Fact If
$$w \in W^{ab}$$
, then $w^{-1}(-\theta + 2\delta) \in \Delta_{\ell}^+$.
 $0 < w^{-1}(-\theta + 2\delta) = w^{-1}(-\theta + \delta) + \delta$
 $= -k\delta + \gamma + \delta = \begin{cases} k > 1 & \text{impossible} \\ k = 0 & \text{excluded} \\ k = 1 & \implies \gamma \in \Delta_{\ell}^+ \end{cases}$

æ

-

Fact If
$$w \in W^{ab}$$
, then $w^{-1}(-\theta + 2\delta) \in \Delta_{\ell}^+$.
 $0 < w^{-1}(-\theta + 2\delta) = w^{-1}(-\theta + \delta) + \delta$
 $= -k\delta + \gamma + \delta = \begin{cases} k > 1 & \text{impossible} \\ k = 0 & \text{excluded} \\ k = 1 & \implies \gamma \in \Delta_{\ell}^+ \end{cases}$

So one defines

$$\mathcal{I}_{\alpha} = \{ \mathfrak{i} \in \mathcal{A}b \mid w_{\mathfrak{i}}^{-1}(-\theta + 2\delta) = \alpha \}.$$

Clearly

$$\mathcal{A}b' = \coprod_{lpha \in \Delta_\ell^+} \mathcal{I}_lpha$$

э

A B + A B +

Proposition (Panyushev, Suter)

$$\mathcal{I}_{lpha}\cong \widehat{W}_{lpha}/W_{lpha}$$

where

$$\widehat{W}_{\alpha} = \langle \boldsymbol{s}_{\beta} \mid \beta \in \widehat{\Pi}, \beta \perp \alpha \rangle$$
$$W_{\alpha} = \langle \boldsymbol{s}_{\beta} \mid \beta \in \Pi, \beta \perp \alpha \rangle$$

In particular, \mathcal{I}_{α} has minimum and maximum. Moreover, the map

 $\beta \mapsto \max \mathcal{I}_{\beta}$

sets up a bijection among long simple roots and maximal abelian ideals.

Proposition (Panyushev, Suter)

$$\mathcal{I}_{lpha}\cong \widehat{W}_{lpha}/W_{lpha}$$

where

$$\widehat{W}_{\alpha} = \langle \boldsymbol{s}_{\beta} \mid \beta \in \widehat{\Pi}, \beta \perp \alpha \rangle$$
$$W_{\alpha} = \langle \boldsymbol{s}_{\beta} \mid \beta \in \Pi, \beta \perp \alpha \rangle$$

In particular, \mathcal{I}_{α} has minimum and maximum. Moreover, the map

 $\beta \mapsto \max \mathcal{I}_{\beta}$

sets up a bijection among long simple roots and maximal abelian ideals. Note that W_{α} is a parabolic subgroup of \widehat{W}_{α} .

• $\mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$

- $\mathfrak{h}_0 \subset \mathfrak{g}_0$ Cartan, Δ_0 roots, Δ_0^+ positive r., Π_0 simple r.
- $\widehat{L}(\mathfrak{g},\sigma) = \sum_{i\in 2\mathbb{Z}} t^{j} \otimes \mathfrak{g}_{0} \oplus \sum_{i\in 2\mathbb{Z}+1} t^{j} \otimes \mathfrak{g}_{1} \oplus \mathbb{C}c \oplus \mathbb{C}d$
- $\widehat{\mathfrak{h}} = \mathfrak{h}_0 \oplus \mathbb{C}c \oplus \mathbb{C}d$ Cartan, $\widehat{\Delta}$ roots
- $\widehat{\Delta}^+ = \Delta^+ \cup \{ \alpha \in \widehat{\Delta} \mid \alpha(d) > 0 \}$ positive roots
- $\widehat{\Pi} = \{\alpha_0, \dots, \alpha_n\}, n = \operatorname{rank} \mathfrak{g}_0$, simple roots
- \widehat{W} Weyl group of $\widehat{L}(\mathfrak{g}, \sigma)$.

Kac classification of finite order automorphisms

Let \mathfrak{g} be a simple Lie algebra of type X_N .

Theorem (Kac)

Up to conjugation in $Aut(\mathfrak{g})$, an automorphism σ of order m can be encoded by an (n+2)-ple

$$(s_0,\ldots,s_n,k):m=k\sum_{i=0}^n m_is_i,$$

where $n = \operatorname{rank}(\mathfrak{g}^{\sigma})$, k is the minimal integer s.t. σ^{k} is inner, s_{0}, \ldots, s_{n} are positive coprime integers and m_{0}, \ldots, m_{n} are the labels of the Dynkin diagram of type $X_{N}^{(k)}$.

Kac classification of finite order automorphisms

Let \mathfrak{g} be a simple Lie algebra of type X_N .

Theorem (Kac)

Up to conjugation in $Aut(\mathfrak{g})$, an automorphism σ of order m can be encoded by an (n+2)-ple

$$(s_0,\ldots,s_n,k):m=k\sum_{i=0}^n m_is_i,$$

where $n = \operatorname{rank}(\mathfrak{g}^{\sigma})$, k is the minimal integer s.t. σ^{k} is inner, s_{0}, \ldots, s_{n} are positive coprime integers and m_{0}, \ldots, m_{n} are the labels of the Dynkin diagram of type $X_{N}^{(k)}$.

When
$$m = 2$$

1 $k = 1, \exists p \text{ s.t. } s_p = 2 \text{ and } s_i = 0 \text{ if } i \neq p;$
 $k = 2, \exists p \text{ s.t. } s_p = 1 \text{ and } s_i = 0 \text{ if } i \neq p;$
2 $k = 1, \exists p, q \text{ s.t. } s_p = s_q = 1 \text{ and } s_i = 0 \text{ if } i \neq p \neq q.$

Encoding the b_0 -stable abelian subspaces: notation

If $\gamma = \sum_{i} c_{i} \alpha_{i} \in \widehat{\Delta}^{+}$ then we can define $ht_{\sigma}(\gamma) = \sum_{i} s_{i} c_{i}$.

(*) *) *) *)

If
$$\gamma = \sum_{i} c_{i} \alpha_{i} \in \widehat{\Delta}^{+}$$
 then we can define $ht_{\sigma}(\gamma) = \sum_{i} s_{i} c_{i}$.

We say that
$$w\in \widehat{W}$$
 is σ -minuscule if $N(w)\subset \{\gamma\in\widehat{\Delta}^+\mid ht_\sigma(\gamma)=1\}.$

The set of σ -minuscule elements is denoted by $\mathcal{W}_{\sigma}^{ab}$.

Theorem (Cellini-Möseneder-P.)

If $w \in W^{ab}_{\sigma}$, $N(w) = \{\beta_1, \ldots, \beta_k\}$, then the map $Ab : W^{ab}_{\sigma} \to \mathcal{I}^{\sigma}_{ab}$ given by

$$Ab(w) = \bigoplus_{i=1}^k (\mathfrak{g}_1)_{-ar{eta}_i}$$

(where $\lambda \mapsto \overline{\lambda}$ is the restriction map $\widehat{\mathfrak{h}} \to \mathfrak{h}_0$), is a poset isomorphism.

Theorem (Cellini-Möseneder-P.)

If $w \in W^{ab}_{\sigma}$, $N(w) = \{\beta_1, \ldots, \beta_k\}$, then the map $Ab : W^{ab}_{\sigma} \to \mathcal{I}^{\sigma}_{ab}$ given by

$$Ab(w) = \bigoplus_{i=1}^k (\mathfrak{g}_1)_{-ar{eta}_i}$$

(where $\lambda \mapsto \overline{\lambda}$ is the restriction map $\widehat{\mathfrak{h}} \to \mathfrak{h}_0$), is a poset isomorphism.

The proof is based on Garland-Lepowsky generalization to the affine case of Kostant's theorem on the homology of the nilpotent radical.

Theorem (Cellini-Möseneder-P.)

Set

$$D_{\sigma} = \bigcup_{w \in \mathcal{W}_{\sigma}^{ab}} wC_1.$$

 D_σ is a polytope. More precisely, $D_\sigma = \cap_{\alpha \in \Phi_\sigma} H^+_\alpha$ where

$$\Phi_{\sigma} = \begin{cases} \widehat{\Pi}_{0} \cup \{\alpha_{i} + ks_{i}\delta \mid \alpha_{i} \in \widehat{\Pi}\} & \text{ in "most" cases,} \\ \widehat{\Pi}_{0} & \text{ in the other cases} \end{cases}$$

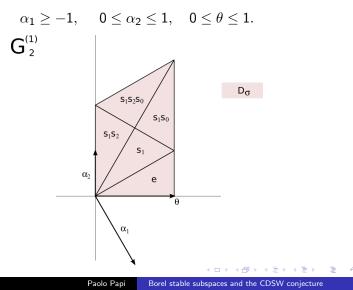
Here

$$\widehat{\mathsf{\Pi}}_0 = \mathsf{\Pi}_0 \cup \cup_{\mathsf{\Sigma}} \{ k\delta - \theta_{\mathsf{\Sigma}} \}$$

- ₹ 🖹 🕨

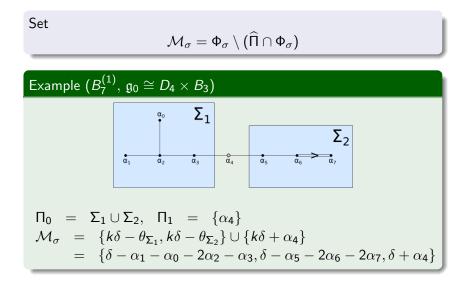
Example of D_{σ}

Let σ be the inner involution of G_2 with $\mathfrak{g}_0 \cong A_1 \times A_1$. Equations for D_σ are



同 ト イ ヨ ト イ ヨ ト

э



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proposition

If $w \in W^{ab}_{\sigma}$ is maximal, there exists $\mu \in \mathcal{M}_{\sigma}$ and $\alpha \in \widehat{\Pi}$ such that $w(\alpha) = \mu$.

∃ ▶ ∢

Proposition

If $w \in W^{ab}_{\sigma}$ is maximal, there exists $\mu \in \mathcal{M}_{\sigma}$ and $\alpha \in \widehat{\Pi}$ such that $w(\alpha) = \mu$.

So we are led to introduce the following posets

$$\mathcal{I}_{\alpha,\mu} = \{ \mathsf{w} \in \mathcal{W}_{\sigma}^{\mathsf{ab}} \mid \mathsf{w}(\alpha) = \mu \}$$

・ロト ・回ト ・ヨト ・ヨト

Problems and results on
$$\mathcal{I}_{lpha,\mu}=\{w\in\mathcal{W}_{\sigma}^{\mathsf{ab}}\mid w(lpha)=\mu\}$$

• When
$$\mathcal{I}_{\alpha,\mu}$$
 is nonempty ?

Problems and results on
$$\mathcal{I}_{lpha,\mu}=\{w\in\mathcal{W}_{\sigma}^{\mathsf{ab}}\mid w(lpha)=\mu\}$$

• When $\mathcal{I}_{\alpha,\mu}$ is nonempty ?

Answer via a combinatorial criterion:

$$\mathcal{I}_{\alpha,\delta-\theta_{\Sigma}} \neq \emptyset \iff \alpha \in \mathcal{A}(\Sigma)_{\ell}$$

< ∃ > < ∃ >

Problems and results on
$$\mathcal{I}_{lpha,\mu}=\{w\in\mathcal{W}_{\sigma}^{\mathsf{ab}}\mid w(lpha)=\mu\}$$

- When $\mathcal{I}_{\alpha,\mu}$ is nonempty ?
- **2** What is the poset structure of $\mathcal{I}_{\alpha,\mu}$?

-

э

- **1** When $\mathcal{I}_{\alpha,\mu}$ is nonempty ?
- **2** What is the poset structure of $\mathcal{I}_{\alpha,\mu}$?

$$\mathcal{I}_{lpha,\delta- heta_{\Sigma}}\cong\widehat{W}_{lpha}/\widehat{W}_{lpha}'$$

where \widehat{W}'_{α} is a reflection subgroup of \widehat{W}_{α} whose structure depends on σ

- **1** When $\mathcal{I}_{\alpha,\mu}$ is nonempty ?
- **2** What is the poset structure of $\mathcal{I}_{\alpha,\mu}$?
- Structure of the intersections $\mathcal{I}_{\alpha,\delta-\theta_{\Sigma}} \cap \mathcal{I}_{\beta,\delta-\theta_{\Sigma'}}$

- When $\mathcal{I}_{\alpha,\mu}$ is nonempty ?
- **2** What is the poset structure of $\mathcal{I}_{\alpha,\mu}$?
- Structure of the intersections $\mathcal{I}_{\alpha,\delta-\theta_{\Sigma}} \cap \mathcal{I}_{\beta,\delta-\theta_{\Sigma'}}$

It turns out that the intersection is non void exactly when $\alpha\in\Sigma',\ \beta\in\Sigma$

- When $\mathcal{I}_{\alpha,\mu}$ is nonempty ?
- **2** What is the poset structure of $\mathcal{I}_{\alpha,\mu}$?
- Structure of the intersections $\mathcal{I}_{\alpha,\delta-\theta_{\Sigma}} \cap \mathcal{I}_{\beta,\delta-\theta_{\Sigma'}}$
- Maximal elements in $\mathcal{I}_{\alpha,\mu}$

- When $\mathcal{I}_{\alpha,\mu}$ is nonempty ?
- **2** What is the poset structure of $\mathcal{I}_{\alpha,\mu}$?
- Structure of the intersections $\mathcal{I}_{\alpha,\delta-\theta_{\Sigma}} \cap \mathcal{I}_{\beta,\delta-\theta_{\Sigma'}}$
- Maximal elements in $\mathcal{I}_{\alpha,\mu}$

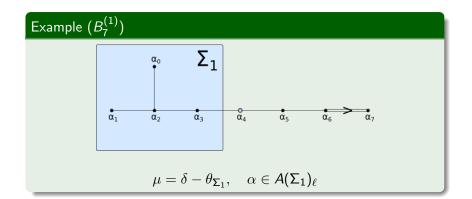
Recall that $\mathcal{I}_{\alpha} \cong \widehat{W}_{\alpha} / \widehat{W}'_{\alpha}$. We show that when \widehat{W}'_{α} is not standard parabolic, maximal elements appear in pairs of $\mathcal{I}_{\alpha,\mu}$'s.

- When $\mathcal{I}_{\alpha,\mu}$ is nonempty ?
- **2** What is the poset structure of $\mathcal{I}_{\alpha,\mu}$?
- Structure of the intersections $\mathcal{I}_{\alpha,\delta-\theta_{\Sigma}} \cap \mathcal{I}_{\beta,\delta-\theta_{\Sigma'}}$
- Maximal elements in $\mathcal{I}_{\alpha,\mu}$

Recall that $\mathcal{I}_{\alpha} \cong \widehat{W}_{\alpha}/\widehat{W}'_{\alpha}$. We show that when \widehat{W}'_{α} is not standard parabolic, maximal elements appear in pairs of $\mathcal{I}_{\alpha,\mu}$'s.More precisely, if w is maximal in $\mathcal{I}_{\alpha,\mu}$, then there exist β and μ' such that w is maximal in $\mathcal{I}_{\beta,\mu'}$ too.

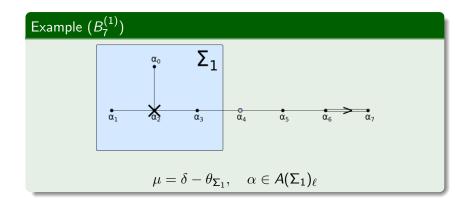
- When $\mathcal{I}_{\alpha,\mu}$ is nonempty ?
- **2** What is the poset structure of $\mathcal{I}_{\alpha,\mu}$?
- Structure of the intersections $\mathcal{I}_{\alpha,\delta-\theta_{\Sigma}} \cap \mathcal{I}_{\beta,\delta-\theta_{\Sigma'}}$
- Maximal elements in $\mathcal{I}_{\alpha,\mu}$
- **5** When maximal elements of $\mathcal{I}_{\alpha,\mu}$ are global maxima ?

- When $\mathcal{I}_{\alpha,\mu}$ is nonempty ?
- **2** What is the poset structure of $\mathcal{I}_{\alpha,\mu}$?
- Structure of the intersections $\mathcal{I}_{\alpha,\delta-\theta_{\Sigma}} \cap \mathcal{I}_{\beta,\delta-\theta_{\Sigma'}}$
- Maximal elements in $\mathcal{I}_{\alpha,\mu}$
- When maximal elements of *I*_{α,μ} are global maxima ? Answer: almost always!



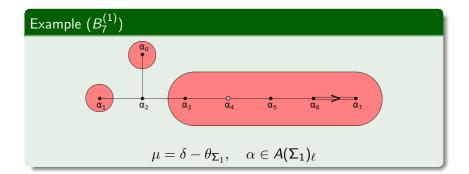
御 と くきと くきと

The structure of $\mathcal{I}_{\alpha,\mu}$: Non-emptiness

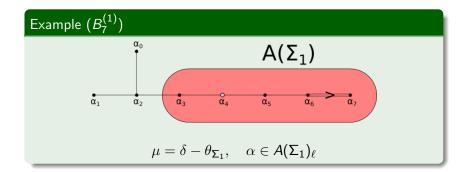


御 と くきと くきと

The structure of $\mathcal{I}_{\alpha,\mu}$: Non-emptiness



伺 ト く ヨ ト く ヨ ト



A B + A B +

Proof of non-emptiness.

We show that $I_{\alpha,\mu}$ has a minimum $w_{\alpha,\mu}$.

A B > A B >

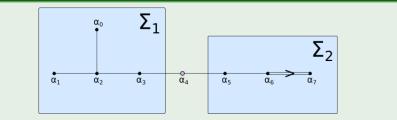
Theorem (Cellini-Möseneder-P.-Pasquali 2011)

The maximal $\mathfrak{b}_0\text{-stable}$ abelian subalgebras are parametrized by the set

$$\mathcal{M} = \left(\bigcup_{\substack{\Sigma \mid \Pi_{0} \\ \Sigma \text{ of type } 1}} (A(\Sigma) \cap \Sigma)_{\ell} \right) \cup \left(\bigcup_{\substack{\Sigma \mid \Pi_{0} \\ \Sigma \text{ of type } 2}} \Sigma_{\ell} \right) \cup \\ \cup \left(\bigcup_{\substack{\Sigma, \Sigma' \mid \Pi_{0}, \Sigma \prec \Sigma' \\ \Sigma, \Sigma' \text{ of type } 1}} (\Sigma_{\ell} \times \Sigma'_{\ell}) \right) \cup \Pi_{1}^{1}.$$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example $(B_7^{(1)})$



 $\mathcal{M} = \{ \alpha_3, \alpha_5, (\alpha_1, \alpha_5), (\alpha_1, \alpha_6), (\alpha_2, \alpha_5), (\alpha_2, \alpha_6), (\alpha_3, \alpha_5), (\alpha_3, \alpha_6), (\alpha_0, \alpha_5), (\alpha_0, \alpha_6), \alpha_4 \}$

- ₹ 🖹 🕨

э

- $\bullet~G$ connected simply connected group corresponding to $\mathfrak g$
- $\bullet~B$ Borel subgroup corresponding to $\mathfrak b$
- G Kac-Moody group corresponding to ĝ, i.e. central extension of the loop group L(G) = G(ℂ[[t]][t⁻¹])
- \mathcal{P} parabolic corresponding to $\mathfrak{g} \subset \widehat{\mathfrak{g}}$, i.e. central extension of $G(\mathbb{C}[[t]])$
- $\mathcal{Y} = \mathcal{G}/\mathcal{P}$ affine Grassmannian, $\mathcal{B} \subset \mathcal{P}$ standard Borel.

Back to the CDSW conjecture

Bruhat decomposition:

$$\mathcal{Y} = \coprod_{w \in W'} \mathcal{B}w\mathcal{P}/\mathcal{P}$$

where W' are the dominant elements in \widehat{W} , i.e., wC_1 is in the fundamental chamber.

Back to the CDSW conjecture

Bruhat decomposition:

$$\mathcal{Y} = \coprod_{w \in \mathcal{W}'} \mathcal{B}w\mathcal{P}/\mathcal{P}$$

where W' are the dominant elements in \widehat{W} , i.e., wC_1 is in the fundamental chamber.

Define

$$\mathcal{Y}_2 = \coprod_{w \in \mathcal{W}^{ab}} \mathcal{B}w\mathcal{P}/\mathcal{P},$$

a closed subvariety of \mathcal{Y} .

Recall that

$$B^{\mathfrak{g}} = \left(\bigwedge \mathfrak{g} / \langle \mathit{Im}(c)
angle \otimes \bigwedge \mathfrak{g} / \langle \mathit{Im}(c)
angle
ight)^{\mathfrak{g}}$$

has a basis $\{z_w\}$ indexed by $w \in W^{ab}$: if $w = w_i$, $\{x_i\}$ is a basis of the submodule of $\bigwedge \mathfrak{g}$ generated by v_i and $\{y_i\}$ is the dual basis, set

$$z_w = \bigwedge_i x_i \wedge y_i.$$

Theorem (Kumar)

The map $H^*(\mathcal{Y}_2) \to B^{\mathfrak{g}}$ mapping the Schubert basis ε_w to z_w is a graded algebra isomorphism.

 $\mathcal{Y}_2 \hookrightarrow \mathcal{Y}$ gives a restriction map $H^*(\mathcal{Y}) \to H^*(\mathcal{Y}_2)$. Recall the projection $\pi : B^{\mathfrak{g}} \to A^{\mathfrak{g}}$. We have

 $\mathbb{C}[p_1,\ldots,p_n]=S(\mathfrak{g}^*)^{\mathfrak{g}}=H^*(\Omega_e(\mathsf{K}))=H^*(\mathcal{Y})\to H^*(\mathcal{Y}_2)=B^{\mathfrak{g}}\to A^{\mathfrak{g}}$

where $2 = \deg p_1 \leq \ldots \leq \deg p_n$.

- 4 母 ト 4 ヨ ト - ヨ - りくや

 $\mathcal{Y}_2 \hookrightarrow \mathcal{Y}$ gives a restriction map $H^*(\mathcal{Y}) \to H^*(\mathcal{Y}_2)$. Recall the projection $\pi : B^{\mathfrak{g}} \to A^{\mathfrak{g}}$. We have

 $\mathbb{C}[p_1,\ldots,p_n]=S(\mathfrak{g}^*)^{\mathfrak{g}}=H^*(\Omega_e(\mathsf{K}))=H^*(\mathcal{Y})\to H^*(\mathcal{Y}_2)=B^{\mathfrak{g}}\to A^{\mathfrak{g}}$

where $2 = \deg p_1 \leq \ldots \leq \deg p_n$.

Theorem (Kumar)

$$p_1 \mapsto S, \qquad p_i \mapsto Ker\pi, i > 1.$$

In particular, $A^{\mathfrak{g}}$ is generated by S

- 4 同 6 4 日 6 - 日 6 - 日

Proposition

In the graded setting, in $B^{\mathfrak{g}}$ we have

$$S^k = \pm \sum_{w \in \mathcal{W}^{ab}_{\sigma}, \ell(w) = k} z_w.$$

If $g = \min_{\alpha,\mu} \ell(w_{\alpha,\mu})$, then at least one summand z_w in S^g is such that wC_1 has a face on a wall in \mathcal{M}_{σ} and g is minimal with this property. Therefore S^{g+1} , viewed in $H^*(\mathcal{Y})$, has some component outside D_{σ} , so projecting down to $H^*(\mathcal{Y}_2)$ this component goes to 0. This should imply that S^{g+1} goes to $Ker\pi$; this would prove the full conjecture in the graded case.