Multiplicity-free actions induced by Dual Pairs

Tobias Pecher

Universität Paderborn

Symmetric Spaces and their Generalizations - June 26, 2012

G reductive group over \mathbb{C} , $V=V_0\oplus V_1$ finite-dimensional super vector space.

G reductive group over \mathbb{C} , $V=V_0\oplus V_1$ finite-dimensional super vector space.

$$P(V) = S(V_0) \otimes \bigwedge (V_1)$$

Super symmetric algebra of V.

G reductive group over \mathbb{C} , $V = V_0 \oplus V_1$ finite-dimensional super vector space.

$$P(V) = S(V_0) \otimes \bigwedge (V_1)$$

Super symmetric algebra of V.

(G, V) is super multiplicity-free if for any $\Gamma \in Irr(G)$,

$$\dim\operatorname{Hom}_{\mathcal{G}}(P(V),\Gamma)\leq 1.$$

- If $V = V_0$, then P(V) = S(V). (MF)
- If $V = V_1$, then $P(V) = \bigwedge(V)$. (SMF)

- If $V = V_0$, then P(V) = S(V). (MF)
- If $V = V_1$, then $P(V) = \bigwedge (V)$. (SMF)

Classified by Kac, Benson-Ratcliff, Leahy, Howe, Pecher.

- If $V = V_0$, then P(V) = S(V). (MF)
- If $V = V_1$, then $P(V) = \bigwedge (V)$. (SMF)

Classified by Kac, Benson-Ratcliff, Leahy, Howe, Pecher.

Let V be irreducible. Assume that $G = \mathbb{C}^{\times} \times [G, G]$, then

- If $V = V_0$, then P(V) = S(V). (MF)
- If $V = V_1$, then $P(V) = \bigwedge (V)$. (SMF)

Classified by Kac, Benson-Ratcliff, Leahy, Howe, Pecher.

Let V be irreducible. Assume that $G = \mathbb{C}^{\times} \times [G, G]$, then

$$(G, V)$$
 (S)MF $\Leftrightarrow \forall k$: dim $\operatorname{Hom}_G(P^k(V), \Gamma) \leq 1$

Series of irreducible (S)MF representations

	MF	SMF
(1)	$\mathrm{GL}_n\otimes\mathrm{GL}_m\ (n\geq 0, m\geq 1)$	$\operatorname{GL}_n \otimes \operatorname{GL}_m (n \geq 0, m \geq 1)$
(2)	$\mathrm{GL}_k \otimes \mathrm{Sp}_n \ (k=0,1,2,3)$	$\operatorname{GL}_k \otimes \operatorname{O}_n (k = 0, 1, 2, 3)$
(3)	$\mathrm{GL}_1\otimes\mathrm{O}_n\ (n\geq 2)$	$\mathrm{GL}_1\otimes\mathrm{Sp}_n\ (n\geq 2)$
(4)	$\mathrm{GL}_n \otimes \mathrm{Sp}_4 \ (n \geq 2)$	$\operatorname{GL}_n \otimes \operatorname{Sp}_4 (n \geq 2)$
(5)	$S^2\mathrm{GL}_n\ (n\geq 2)$	$S^2\mathrm{GL}_n\ (n\geq 2)$
(6)	$\bigwedge^2 \operatorname{GL}_n (n \geq 4)$	$\bigwedge^2 \operatorname{GL}_n (n \geq 4)$

Series of irreducible (S)MF representations

	MF	SMF
(1)	$\mathrm{GL}_n \otimes \mathrm{GL}_m \ (n \geq 0, m \geq 1)$	$\operatorname{GL}_n \otimes \operatorname{GL}_m \ (n \geq 0, m \geq 1)$
(2)	$\mathrm{GL}_k \otimes \mathrm{Sp}_n \ (k=0,1,2,3)$	$\operatorname{GL}_k \otimes \operatorname{O}_n (k = 0, 1, 2, 3)$
(3)	$\mathrm{GL}_1\otimes\mathrm{O}_n\ (n\geq 2)$	$\operatorname{GL}_1 \otimes \operatorname{Sp}_n (n \geq 2)$
(4)	$\mathrm{GL}_n \otimes \mathrm{Sp}_4 \ (n \geq 2)$	$\operatorname{GL}_n \otimes \operatorname{Sp}_4 (n \geq 2)$
(5)	$S^2\mathrm{GL}_n\ (n\geq 2)$	$S^2\mathrm{GL}_n\ (n\geq 2)$
(6)	$\bigwedge^2 \operatorname{GL}_n (n \geq 4)$	$\bigwedge^2 \operatorname{GL}_n (n \ge 4)$

• Explanation for that correspondence?

Series of irreducible (S)MF representations

	MF	SMF
(1)	$\mathrm{GL}_n\otimes\mathrm{GL}_m\ (n\geq 0, m\geq 1)$	$\operatorname{GL}_n \otimes \operatorname{GL}_m (n \geq 0, m \geq 1)$
(2)	$\mathrm{GL}_k \otimes \mathrm{Sp}_n \ (k=0,1,2,3)$	$\mid \mathrm{GL}_k \otimes \mathrm{O}_n \; (k=0,1,2,3) \mid$
(3)	$\mathrm{GL}_1\otimes\mathrm{O}_n\ (n\geq 2)$	$\operatorname{GL}_1 \otimes \operatorname{Sp}_n (n \geq 2)$
(4)	$\mathrm{GL}_n \otimes \mathrm{Sp}_4 \ (n \geq 2)$	$\operatorname{GL}_n \otimes \operatorname{Sp}_4 (n \geq 2)$
(5)	$S^2\mathrm{GL}_n\ (n\geq 2)$	$S^2\mathrm{GL}_n\ (n\geq 2)$
(6)	$\bigwedge^2 \operatorname{GL}_n (n \ge 4)$	$\bigwedge^2 \operatorname{GL}_n (n \ge 4)$

- Explanation for that correspondence?
- Further parallelism in the structure?

Let
$$V = \mathbb{C}^n \otimes \mathbb{C}^{p|q} = \mathbb{C}^n \otimes \mathbb{C}^p \oplus \mathbb{C}^n \otimes \mathbb{C}^q$$
.

Let
$$V = \mathbb{C}^n \otimes \mathbb{C}^{p|q} = \mathbb{C}^n \otimes \mathbb{C}^p \oplus \mathbb{C}^n \otimes \mathbb{C}^q$$
.

Classical group $G \subseteq GL_n$ acts on each copy of \mathbb{C}^n .

Let
$$V = \mathbb{C}^n \otimes \mathbb{C}^{p|q} = \mathbb{C}^n \otimes \mathbb{C}^p \oplus \mathbb{C}^n \otimes \mathbb{C}^q$$
.

Classical group $G \subseteq GL_n$ acts on each copy of \mathbb{C}^n .

 $\mathcal{PD}(V)$ = Polynomial differential operators on P(V).

Let
$$V = \mathbb{C}^n \otimes \mathbb{C}^{p|q} = \mathbb{C}^n \otimes \mathbb{C}^p \oplus \mathbb{C}^n \otimes \mathbb{C}^q$$
.

Classical group $G \subseteq GL_n$ acts on each copy of \mathbb{C}^n .

 $\mathcal{PD}(V)$ = Polynomial differential operators on P(V).

$$\mathcal{PD}(V)^G \simeq P(V+V^*)^G = \left\langle \Gamma^{(2,0)}, \Gamma^{(1,1)}, \Gamma^{(0,2)} \right\rangle$$

Let
$$V = \mathbb{C}^n \otimes \mathbb{C}^{p|q} = \mathbb{C}^n \otimes \mathbb{C}^p \oplus \mathbb{C}^n \otimes \mathbb{C}^q$$
.

Classical group $G \subseteq GL_n$ acts on each copy of \mathbb{C}^n .

 $\mathcal{PD}(V)$ = Polynomial differential operators on P(V).

$$\mathcal{PD}(V)^G \simeq P(V+V^*)^G = \left\langle \Gamma^{(2,0)}, \Gamma^{(1,1)}, \Gamma^{(0,2)} \right\rangle$$

 $\Gamma^{(a,b)}$ operators of order a-b.

Let
$$V = \mathbb{C}^n \otimes \mathbb{C}^{p|q} = \mathbb{C}^n \otimes \mathbb{C}^p \oplus \mathbb{C}^n \otimes \mathbb{C}^q$$
.

Classical group $G \subseteq GL_n$ acts on each copy of \mathbb{C}^n .

 $\mathcal{PD}(V)$ = Polynomial differential operators on P(V).

$$\mathcal{PD}(V)^G \simeq P(V+V^*)^G = \left\langle \Gamma^{(2,0)}, \Gamma^{(1,1)}, \Gamma^{(0,2)} \right\rangle$$

 $\Gamma^{(a,b)}$ operators of order a-b.

 $\Gamma = \Gamma^{(2,0)} \oplus \Gamma^{(1,1)} \oplus \Gamma^{(0,2)}$ Lie s.a. w.r.t. super commutator.

We have natural $G \times \Gamma$ action on P(V).

We have natural $G \times \Gamma$ action on P(V).

$$\mathcal{H}^k = \{ x \in P^k(V) : Dx = 0 \text{ for all } D \in \Gamma^{(0,2)} \}$$

are called Γ -harmonics of degree k.

We have natural $G \times \Gamma$ action on P(V).

$$\mathcal{H}^k = \{x \in P^k(V) : Dx = 0 \text{ for all } D \in \Gamma^{(0,2)}\}$$

are called Γ -harmonics of degree k.

G and Γ commute, so these subspaces are G-stable.

We have natural $G \times \Gamma$ action on P(V).

$$\mathcal{H}^k = \{x \in P^k(V) : Dx = 0 \text{ for all } D \in \Gamma^{(0,2)}\}$$

are called Γ -harmonics of degree k.

G and Γ commute, so these subspaces are G-stable.

Let $P(V) = \bigoplus_k I_k$ be the $G \times \Gamma$ -isotypic decomposition.

We have natural $G \times \Gamma$ action on P(V).

$$\mathcal{H}^k = \{x \in P^k(V) : Dx = 0 \text{ for all } D \in \Gamma^{(0,2)}\}$$

are called Γ -harmonics of degree k.

G and Γ commute, so these subspaces are G-stable.

Let $P(V) = \bigoplus_k I_k$ be the $G \times \Gamma$ -isotypic decomposition.

 $I_0 := P(V)^G$ is a $\Gamma^{(1,1)}$ module.

i) (G,Γ) is a *(reductive) dual pair* on P(V):

$$I_k = \sigma_k \otimes \tau_k$$

as a $G \times \Gamma$ -module, with σ_k , τ_k irreducible and pairwise non-isomorphic. Furthermore, $\dim(\sigma_k) < \infty$.

i) (G,Γ) is a *(reductive) dual pair* on P(V):

$$I_k = \sigma_k \otimes \tau_k$$

as a $G \times \Gamma$ -module, with σ_k , τ_k irreducible and pairwise non-isomorphic. Furthermore, $\dim(\sigma_k) < \infty$.

ii) $I_0 = \langle \Gamma^{(2,0)} \rangle$ as an associative algebra.

i) (G,Γ) is a *(reductive) dual pair* on P(V):

$$I_k = \sigma_k \otimes \tau_k$$

as a $G \times \Gamma$ -module, with σ_k , τ_k irreducible and pairwise non-isomorphic. Furthermore, $\dim(\sigma_k) < \infty$.

- ii) $I_0 = \left\langle \Gamma^{(2,0)} \right\rangle$ as an associative algebra.
- iii) $m: I_0 \otimes \mathcal{H} \to P(V)$ is a $G \times \Gamma^{(1,1)}$ -equivariant surjection.

i) (G,Γ) is a *(reductive) dual pair* on P(V):

$$I_k = \sigma_k \otimes \tau_k$$

as a $G \times \Gamma$ -module, with σ_k , τ_k irreducible and pairwise non-isomorphic. Furthermore, $\dim(\sigma_k) < \infty$.

- ii) $I_0 = \left\langle \Gamma^{(2,0)} \right
 angle$ as an associative algebra.
- iii) $m: I_0 \otimes \mathcal{H} \to P(V)$ is a $G \times \Gamma^{(1,1)}$ -equivariant surjection.
- iv) $(G,\Gamma^{(1,1)})$ is a dual pair on $\mathcal H$

 $G \times \Gamma$ dual pair on P(V)

 $G \times \Gamma$ dual pair on $P(V) \Rightarrow G \times \Gamma^{(1,1)}$ acts on $V = \mathbb{C}^n \otimes \mathbb{C}^{p|q}$.

 $G \times \Gamma$ dual pair on $P(V) \Rightarrow G \times \Gamma^{(1,1)}$ acts on $V = \mathbb{C}^n \otimes \mathbb{C}^{p|q}$.

Up to a shift, this is the natural action of $G \times \mathfrak{gl}(p|q)$.

 $G \times \Gamma$ dual pair on $P(V) \Rightarrow G \times \Gamma^{(1,1)}$ acts on $V = \mathbb{C}^n \otimes \mathbb{C}^{p|q}$.

Up to a shift, this is the natural action of $G \times \mathfrak{gl}(p|q)$.

Let I_0^{ν} denotes the *G*-invariants of degree ν . By iii), $P^k(V)$ is a quotient of

$$\tilde{P}^{k}(V) := \bigoplus_{j=0,\dots,\lfloor \frac{k}{2} \rfloor} I_0^{2j} \otimes \mathcal{H}^{k-2j}, \tag{1}$$

 $G \times \Gamma$ dual pair on $P(V) \Rightarrow G \times \Gamma^{(1,1)}$ acts on $V = \mathbb{C}^n \otimes \mathbb{C}^{p|q}$.

Up to a shift, this is the natural action of $G \times \mathfrak{gl}(p|q)$.

Let I_0^{ν} denotes the *G*-invariants of degree ν . By iii), $P^k(V)$ is a quotient of

$$\tilde{P}^{k}(V) := \bigoplus_{j=0,\dots,\lfloor \frac{k}{2} \rfloor} I_0^{2j} \otimes \mathcal{H}^{k-2j}, \tag{1}$$

 $\forall k \colon \tilde{P}^k(V) \text{ mf. as } G \times \Gamma^{(1,1)} \text{ mod.} \Rightarrow (G \times G^{(1,1)}, V) \text{ (S)MF.}$

Dual pairs on $P(V) = S(\mathbb{C}^n \otimes \mathbb{C}^p) \otimes \bigwedge (\mathbb{C}^n \otimes \mathbb{C}^q)$

Dual pairs on
$$P(V) = S(\mathbb{C}^n \otimes \mathbb{C}^p) \otimes \bigwedge(\mathbb{C}^n \otimes \mathbb{C}^q)$$

 $(G, \Gamma) = (GL_n, \mathfrak{gl}(p|q)), \ (O_n, \mathfrak{spo}(2p|2q)), \ (Sp_n, \mathfrak{osp}(2p|2q))$

Dual pairs on
$$P(V) = S(\mathbb{C}^n \otimes \mathbb{C}^p) \otimes \bigwedge(\mathbb{C}^n \otimes \mathbb{C}^q)$$

$$(G, \Gamma) = (\operatorname{GL}_n, \mathfrak{gl}(p|q)), \ (\operatorname{O}_n, \mathfrak{spo}(2p|2q)), \ (\operatorname{Sp}_n, \mathfrak{osp}(2p|2q))$$

$$\Gamma^{(1,1)} = \mathfrak{gl}(p|q) \text{ in each case!}$$

Dual pairs on
$$P(V) = S(\mathbb{C}^n \otimes \mathbb{C}^p) \otimes \bigwedge (\mathbb{C}^n \otimes \mathbb{C}^q)$$

$$(G,\Gamma)=(\mathrm{GL}_n,\mathfrak{gl}(p|q)),\ (\mathrm{O}_n,\mathfrak{spo}(2p|2q)),\ (\mathrm{Sp}_n,\mathfrak{osp}(2p|2q))$$

$$\Gamma^{(1,1)} = \mathfrak{gl}(p|q)$$
 in each case!

Consider special cases p = 0 or q = 0:

$$(G,\Gamma)$$
 on $P(V_0)=S(V_0)\leadsto (G^\vee,\Gamma^\vee)$ on $P(V_1)=\bigwedge (V_1)$, s. th.

$$(G,\Gamma)$$
 on $P(V_0)=S(V_0)\leadsto (G^\vee,\Gamma^\vee)$ on $P(V_1)=\bigwedge (V_1)$, s. th.

• $V_0 = V_1$ as abstract vector spaces,

$$(G,\Gamma)$$
 on $P(V_0)=S(V_0)\leadsto (G^\vee,\Gamma^\vee)$ on $P(V_1)=\bigwedge (V_1)$, s. th.

- $V_0 = V_1$ as abstract vector spaces,
- $\bullet \ \Gamma = \Gamma^{\vee}.$

$$(G,\Gamma)$$
 on $P(V_0)=S(V_0)\leadsto (G^\vee,\Gamma^\vee)$ on $P(V_1)=\bigwedge (V_1)$, s. th.

- $V_0 = V_1$ as abstract vector spaces,
- \bullet $\Gamma = \Gamma^{\vee}$.

In this case, we call (G,Γ) and (G^{\vee},Γ^{\vee}) a couple of dual pairs.

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$		
$(\mathrm{Sp}_n,\mathfrak{gl}(p q))$		
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$		

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	
$(\operatorname{Sp}_n,\mathfrak{gl}(p q))$		
$(\mathrm{GL}_n,\mathfrak{gl}(p q))$		

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	
$(\operatorname{Sp}_n,\mathfrak{gl}(p q))$	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	
$(\mathrm{GL}_n,\mathfrak{gl}(p q))$		

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	
$(\mathrm{Sp}_n,\mathfrak{gl}(p q))$	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(O_n, \mathfrak{sp}(2p))$	

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(q))$
$(\mathrm{Sp}_n,\mathfrak{gl}(p q))$	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(O_n, \mathfrak{sp}(2p))$	

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(q))$
$(\operatorname{Sp}_n,\mathfrak{gl}(p q))$	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(\operatorname{Sp}_n, \mathfrak{sp}(2q))$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(O_n, \mathfrak{sp}(2p))$	

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(q))$
$(\mathrm{Sp}_n,\mathfrak{gl}(p q))$	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(\operatorname{Sp}_n, \mathfrak{sp}(2q))$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(O_n, \mathfrak{sp}(2p))$	$(O_n, \mathfrak{so}(2q))$

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(q))$
$(\mathrm{Sp}_n,\mathfrak{gl}(p q))$	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(\mathrm{Sp}_n,\mathfrak{sp}(2q))$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(O_n, \mathfrak{sp}(2p))$	$(O_n, \mathfrak{so}(2q))$

	(G,Γ)	(G^{\vee},Γ)
(1)		
(2)		
_(3)		

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(q))$
$(\mathrm{Sp}_n,\mathfrak{gl}(p q))$	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(\operatorname{Sp}_n, \mathfrak{sp}(2q))$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(O_n, \mathfrak{sp}(2p))$	$(O_n, \mathfrak{so}(2q))$

	(G,Γ)	(G^{\vee}, Γ)
(1)	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$
(2)		
(3)		

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\mathrm{GL}_n,\mathfrak{gl}(p q))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(q))$
$(\operatorname{Sp}_n,\mathfrak{gl}(p q))$	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(\operatorname{Sp}_n, \mathfrak{sp}(2q))$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(O_n, \mathfrak{sp}(2p))$	$(O_n, \mathfrak{so}(2q))$

	(G,Γ)	(G^{\vee}, Γ)
(1)	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$
(2)	$(\operatorname{Sp}_n,\mathfrak{so}(2p))$	$(O_n, \mathfrak{so}(2p))$
(3)		

	$S(\mathbb{C}^n\otimes\mathbb{C}^p)$	$\bigwedge(\mathbb{C}^n\otimes\mathbb{C}^q)$
$(\mathrm{GL}_n,\mathfrak{gl}(p q))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(q))$
$(\operatorname{Sp}_n,\mathfrak{gl}(p q))$	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(\mathrm{Sp}_n,\mathfrak{sp}(2q))$
$(\operatorname{GL}_n,\mathfrak{gl}(p q))$	$(O_n, \mathfrak{sp}(2p))$	$(O_n, \mathfrak{so}(2q))$

	(G,Γ)	(G^{\vee}, Γ)
		$(\mathrm{GL}_n,\mathfrak{gl}(p))$
(2)	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(O_n,\mathfrak{so}(2p))$
(3)	$(O_n, \mathfrak{sp}(2p))$	$(\operatorname{Sp}_n, \mathfrak{sp}(2p))$

	(G,Γ)	(G^{\vee},Γ)	MF	SMF
$\overline{(1)}$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$		
(2)	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(O_n, \mathfrak{so}(2p))$		
(3)	$(\mathcal{O}_n,\mathfrak{sp}(2p))$	$(\operatorname{Sp}_n, \mathfrak{sp}(2p))$		

	(G,Γ)	(G^{\vee},Γ)	MF	SMF
$\overline{(1)}$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$\operatorname{GL}_n \otimes \operatorname{GL}_p$	$\mathrm{GL}_n \otimes \mathrm{GL}_p$
(2)	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(O_n, \mathfrak{so}(2p))$		
(3)	$(\mathcal{O}_n,\mathfrak{sp}(2p))$	$(\operatorname{Sp}_n, \mathfrak{sp}(2p))$		

	(G,Γ)	(G^{\vee},Γ)	MF	SMF
$\overline{(1)}$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$\operatorname{GL}_n \otimes \operatorname{GL}_p$	$\mathrm{GL}_n \otimes \mathrm{GL}_p$
(2)	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(O_n, \mathfrak{so}(2p))$	$\operatorname{Sp}_n \otimes \operatorname{GL}_p$	$O_n \otimes GL_p$
(3)	$(\mathcal{O}_n,\mathfrak{sp}(2p))$	$(\mathrm{Sp}_n,\mathfrak{sp}(2p))$		

	(<i>G</i> , Γ)	(G^{\vee},Γ)	MF	SMF
(1)	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$\mathrm{GL}_n\otimes\mathrm{GL}_p$	$\operatorname{GL}_n \otimes \operatorname{GL}_p$
(2)	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(O_n, \mathfrak{so}(2p))$	$\operatorname{Sp}_n \otimes \operatorname{GL}_p$	$O_n \otimes GL_p$
(3)	$(O_n, \mathfrak{sp}(2p))$	$(\mathrm{Sp}_n,\mathfrak{sp}(2p))$	$O_n \otimes \mathbb{C}^{\times}$	$\operatorname{Sp}_{n}\otimes\mathbb{C}^{ imes}$

	(G,Γ)	(G^{\vee},Γ)	MF	SMF
$\overline{(1)}$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$(\mathrm{GL}_n,\mathfrak{gl}(p))$	$\mathrm{GL}_n \otimes \mathrm{GL}_p$	$\operatorname{GL}_n \otimes \operatorname{GL}_p$
(2)	$(\mathrm{Sp}_n,\mathfrak{so}(2p))$	$(O_n, \mathfrak{so}(2p))$	$\operatorname{Sp}_n \otimes \operatorname{GL}_p$	$O_n \otimes GL_p$
(3)	$(\mathcal{O}_n,\mathfrak{sp}(2p))$	$(\operatorname{Sp}_n, \mathfrak{sp}(2p))$	$O_n \otimes \mathbb{C}^{\times}$	$\operatorname{Sp}_{n}\otimes\mathbb{C}^{ imes}$

(1)
$$p \in \mathbb{N}$$
; (2) $p = 0, 1, 2, 3$; (3) $p = 1$.

For (1) - (3) in the mentioned ranges of p, the decompositions of S(V) and $\bigwedge(V)$ are the 'same':

For (1) - (3) in the mentioned ranges of p, the decompositions of S(V) and $\bigwedge(V)$ are the 'same':

There is $\Xi \subseteq Par \times Par$, $\varepsilon_{\lambda}, \varepsilon_{\lambda}^{\vee} \in \{0, 1\}$ s.th.

$$S(V) = \bigoplus_{\lambda \in \Xi} \varepsilon_{\lambda} \cdot V_{\lambda_{1}} \otimes V_{\lambda_{2}} \text{ as a } G \times G^{(1,1)} \text{ module.}$$

$$\bigwedge(V) = \bigoplus_{\lambda \in \Xi} \varepsilon_{\lambda}^{\vee} \cdot V_{\lambda_{1}^{t}} \otimes V_{\lambda_{2}} \text{ as a } G^{\vee} \times G^{(1,1)} \text{ module}.$$

For (1) - (3) in the mentioned ranges of p, the decompositions of S(V) and $\bigwedge(V)$ are the 'same':

There is $\Xi \subseteq Par \times Par$, $\varepsilon_{\lambda}, \varepsilon_{\lambda}^{\vee} \in \{0, 1\}$ s.th.

$$S(V) = \bigoplus_{\lambda \in \Xi} \varepsilon_{\lambda} \cdot V_{\lambda_1} \otimes V_{\lambda_2} \text{ as a } G \times G^{(1,1)} \text{ module.}$$

$$\bigwedge(V) = \bigoplus_{\lambda \in \Xi} \varepsilon_{\lambda}^{\vee} \cdot V_{\lambda_{1}^{t}} \otimes V_{\lambda_{2}} \text{ as a } G^{\vee} \times G^{(1,1)} \text{ module.}$$

Recall:
$$\tilde{P}^k(V) = \bigoplus_j I^{2j} \otimes \mathcal{H}^{k-2j}$$
.

Decomposition of harmonics (Cheng, Zhang)

Let
$$\frac{1}{2} = (\frac{1}{2}, \dots, \frac{1}{2}; -\frac{1}{2}, \dots, -\frac{1}{2})$$
, $Par(p|q) = {\lambda : \lambda_{p+1} \leq q}$.

Decomposition of harmonics (Cheng, Zhang)

Let
$$\frac{1}{2} = (\frac{1}{2}, \dots, \frac{1}{2}; -\frac{1}{2}, \dots, -\frac{1}{2})$$
, $Par(p|q) = \{\lambda : \lambda_{p+1} \leq q\}$.

 $(O_n, \mathfrak{spo}(2p|2q))$ harmonics:

$$\mathcal{H} = igoplus_{\lambda \in \mathit{Par}(p|q), \; \lambda_1^t + \lambda_2^t \leq n} V_{\lambda}^n \otimes V_{\lambda + nrac{1}{2}}^{p|q}$$

$$\mathcal{H} = igoplus_{\lambda \in \mathit{Par}(p|q), \; \ell(\lambda) \leq rac{n}{2}} V_{\lambda}^n \otimes V_{\lambda + nrac{1}{2}}^{p|q}$$

$$\mathfrak{h}=\sum_{i=1}^{p+q}\mathbb{C} E_{i,i}$$
 Cartan, $\mathfrak{b}=\sum_{i\leq j}\mathbb{C} E_{i,j}$ Borel subalgebra

$$\mathfrak{h}=\sum_{i=1}^{p+q}\mathbb{C} E_{i,i}$$
 Cartan, $\mathfrak{b}=\sum_{i\leq j}\mathbb{C} E_{i,j}$ Borel subalgebra

For
$$\Lambda \in \mathfrak{h}^*$$
, let $\Lambda_i = \Lambda(E_{i,i})$.

$$\mathfrak{h} = \sum_{i=1}^{p+q} \mathbb{C} E_{i,i}$$
 Cartan, $\mathfrak{b} = \sum_{i \leq j} \mathbb{C} E_{i,j}$ Borel subalgebra

For $\Lambda \in \mathfrak{h}^*$, let $\Lambda_i = \Lambda(E_{i,i})$. Given a partition $\lambda \in Par(p|q)$,

$$V_{\lambda}^{p|q}$$

denotes irreducible $\mathfrak{gl}(p|q)$ representation of highest weight

$$\Lambda := (\lambda_1, \ldots, \lambda_p; \langle \lambda_1^t - p \rangle, \ldots, \langle \lambda_q^t - p \rangle).$$

$$\mathfrak{h} = \sum_{i=1}^{p+q} \mathbb{C} E_{i,i}$$
 Cartan, $\mathfrak{b} = \sum_{i \leq j} \mathbb{C} E_{i,j}$ Borel subalgebra

For $\Lambda \in \mathfrak{h}^*$, let $\Lambda_i = \Lambda(E_{i,i})$. Given a partition $\lambda \in Par(p|q)$,

$$V_{\lambda}^{p|q}$$

denotes irreducible $\mathfrak{gl}(p|q)$ representation of highest weight

$$\Lambda := (\lambda_1, \ldots, \lambda_p; \left\langle \lambda_1^t - p \right\rangle, \ldots, \left\langle \lambda_q^t - p \right\rangle).$$

$$\lambda \in \mathit{Par}(p|0) \Rightarrow \Lambda = (\lambda_1, \dots, \lambda_p, 0, \dots, 0)$$

$$\mathfrak{h} = \sum_{i=1}^{p+q} \mathbb{C} E_{i,i}$$
 Cartan, $\mathfrak{b} = \sum_{i \leq j} \mathbb{C} E_{i,j}$ Borel subalgebra

For $\Lambda \in \mathfrak{h}^*$, let $\Lambda_i = \Lambda(E_{i,i})$. Given a partition $\lambda \in Par(p|q)$,

$$V_{\lambda}^{p|q}$$

denotes irreducible $\mathfrak{gl}(p|q)$ representation of highest weight

$$egin{aligned} \Lambda := (\lambda_1, \dots, \lambda_p; \left< \lambda_1^t - p \right>, \dots, \left< \lambda_q^t - p \right>). \ \lambda \in \mathit{Par}(p|0) \Rightarrow \Lambda = (\lambda_1, \dots, \lambda_p, 0, \dots, 0) \ \lambda \in \mathit{Par}(0|q) \Rightarrow \Lambda = (\lambda_1^t, \dots, \lambda_q^t) \end{aligned}$$

Decomposition of harmonics - Case (2)

 $(O_n, \mathfrak{spo}(2p|2q))$ harmonics:

$$\mathcal{H}^k = igoplus_{\lambda \in \mathit{Par}(p|q), \ \lambda_1^t + \lambda_2^t \leq n, \ |\lambda| = k} V_\lambda^n \otimes V_\lambda^{p|q}$$

$$\mathcal{H}^k = igoplus_{\lambda \in \mathit{Par}(q|p), \; \ell(\lambda) \leq rac{n}{2}, \; |\lambda| = k} V^n_{\lambda} \otimes V^{q|p}_{\lambda}$$

Decomposition of harmonics - Case (2)

 $(O_n, \mathfrak{so}(2q))$ harmonics:

$$\mathcal{H}^k = igoplus_{\lambda_1 \leq q, \ \lambda_1^t + \lambda_2^t \leq n, \ |\lambda| = k} V_{[\lambda]}^n \otimes V_{\lambda^t}^q$$

$$\mathcal{H}^k = igoplus_{\ell(\lambda) \leq \mathit{min}(q, rac{n}{2}), \ |\lambda| = k} V^n_{\langle \lambda
angle} \otimes V^q_{\lambda}$$

Decomposition of harmonics - Case (2)

 $(O_n, \mathfrak{so}(2q))$ harmonics:

$$\mathcal{H}^k = igoplus_{\ell(\lambda) \leq q, \ \lambda_1 + \lambda_2 \leq n, \ |\lambda| = k} V^n_{[\lambda^t]} \otimes V^q_{\lambda}$$

$$\mathcal{H}^k = igoplus_{\ell(\lambda) \leq \mathit{min}(q, rac{n}{2}), \ |\lambda| = k} V^n_{\langle \lambda
angle} \otimes V^q_{\lambda}$$

Decomposition of harmonics (n >> k)

 $(O_n, \mathfrak{so}(2q))$ harmonics:

$$\mathcal{H}^{k} = \bigoplus_{\ell(\lambda) \leq q, \ \lambda_{1} + \lambda_{2} \leq \mathbf{n}, \ |\lambda| = k} V_{[\lambda^{t}]}^{n} \otimes V_{\lambda}^{q}$$

$$\mathcal{H}^k = igoplus_{\ell(\lambda) \leq \mathit{min}(q, rac{n}{2}), \ |\lambda| = k} V^n_{\langle \lambda
angle} \otimes V^q_{\lambda}$$

Decomposition of harmonics (n >> k)

 $(O_n, \mathfrak{so}(2q))$ harmonics:

$$\mathcal{H}^k = igoplus_{\ell(\lambda) \leq q, \ |\lambda| = k} V^n_{[\lambda^t]} \otimes V^q_{\lambda}$$

$$\mathcal{H}^k = igoplus_{\ell(\lambda) \leq q, \ |\lambda| = k} V^n_{\langle \lambda
angle} \otimes V^q_{\lambda}$$

Decomposition of Invariants - Case (2)

$$I_{\mathrm{O}_n}^{2j} = igoplus_{|\mu|=2j,\;\ell(\mu)\leq q,\;\mu_i\leq \mathbf{n},\;\mu_i'\equiv 0} V_\mu^q V_\mu^q$$
 $I_{\mathrm{Sp}_n}^{2j} = igoplus_{|\mu|=2j,\;\ell(\mu)\leq \min(q,\mathbf{n}),\;\mu_i'\equiv 0} V_\mu^q$

as $\mathfrak{gl}(q)$ modules. In particular, $I_{O_n}^{2j} = I_{\operatorname{Sp}_n}^{2j}$ for n >> j.

Decomposition under $H \times \mathfrak{gl}(p)$

In cases (1) - (3), the $H \times \mathfrak{gl}(p)$ decomposition of

$$\tilde{P}^k(V) = \bigoplus_j I^{2j} \otimes \mathcal{H}^{k-2j}$$

is multiplicity-free for p as above.

Decomposition under $H \times \mathfrak{gl}(p)$

In cases (1) - (3), the $H \times \mathfrak{gl}(p)$ decomposition of

$$\tilde{P}^k(V) = \bigoplus_j I^{2j} \otimes \mathcal{H}^{k-2j}$$

is multiplicity-free for p as above.

ATTENZIONE:

In case (3), $\tilde{P}^k(V)$ is not multiplicity-free for any p > 1.

Decomposition under $H \times \mathfrak{gl}(p)$

In cases (1) - (3), the $H \times \mathfrak{gl}(p)$ decomposition of

$$\tilde{P}^k(V) = \bigoplus_j I^{2j} \otimes \mathcal{H}^{k-2j}$$

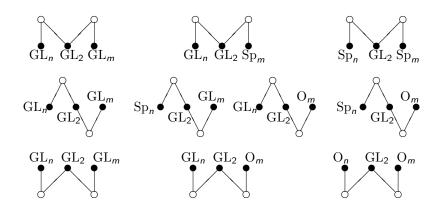
is multiplicity-free for p as above.

ATTENZIONE:

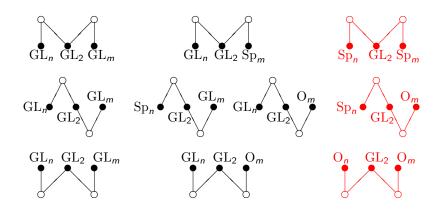
In case (3), $\tilde{P}^k(V)$ is not multiplicity-free for any p > 1.

$$(\operatorname{SL}_n \otimes \operatorname{Sp}_4)$$
 (S)MF!

Super MF spaces $(G = G_1 \times G_2 \times G_3)$



Super MF spaces $(G = G_1 \times G_2 \times G_3)$



Case (2):

$$P^k(V) = \bigoplus_{(\lambda_1, \lambda_2) \in \Xi} V_{\lambda_1} \otimes V_{\lambda_2} \ (G \times \mathrm{GL}_p)$$

with λ_1 all pairwise different (if p = 2).

Case (2):

$$P^k(V) = \bigoplus_{(\lambda_1, \lambda_2) \in \Xi} V_{\lambda_1} \otimes V_{\lambda_2} \ (G \times \mathrm{GL}_p)$$

with λ_1 all pairwise different (if p=2).

Given couples (G_i, Γ_i) , (G_i^{\vee}, Γ_i) on V_i .

Case (2):

$$P^k(V) = \bigoplus_{(\lambda_1, \lambda_2) \in \Xi} V_{\lambda_1} \otimes V_{\lambda_2} \ (G \times \mathrm{GL}_p)$$

with λ_1 all pairwise different (if p=2).

Given couples (G_i, Γ_i) , (G_i^{\vee}, Γ_i) on V_i .

$$H_1 imes \operatorname{GL}_2 imes H_2 \circlearrowleft V_1 \oplus V_2$$

Case (2):

$$P^k(V) = \bigoplus_{(\lambda_1, \lambda_2) \in \Xi} V_{\lambda_1} \otimes V_{\lambda_2} \ (G \times \mathrm{GL}_p)$$

with λ_1 all pairwise different (if p=2).

Given couples (G_i, Γ_i) , (G_i^{\vee}, Γ_i) on V_i .

$$H_1 \times \operatorname{GL}_2 \times H_2 \circlearrowleft V_1 \oplus V_2$$

$$P(V_1 \oplus V_2) = P(V_1) \otimes P(V_2) = \bigoplus_{\mu,\lambda} V_{c(\lambda_1)}^n \otimes (V_{\lambda_2}^2 \otimes V_{\mu_2}^2) \otimes V_{c(\mu_1)}^m$$

$$P(\mathbb{C}^n \otimes \mathbb{C}^{p|q}) = \left\{ \begin{array}{ll} \bigoplus_{\lambda} V_{\lambda}^n \otimes V_{\lambda'}^{p|q} & : & \mathrm{GL}_n \times \mathfrak{gl}(p|q) \\ \bigoplus_{\mu} V_{\mu}^n \otimes V_{\mu'}^{p|q} & : & \mathrm{Sp}_n \times \mathfrak{osp}(2p|2q) \end{array} \right.$$

$$P(\mathbb{C}^n \otimes \mathbb{C}^{p|q}) = \left\{ \begin{array}{ll} \bigoplus_{\lambda} V_{\lambda}^n \otimes V_{\lambda'}^{p|q} & : & \operatorname{GL}_n \times \mathfrak{gl}(p|q) \\ \bigoplus_{\mu} V_{\mu}^n \otimes V_{\mu'}^{p|q} & : & \operatorname{Sp}_n \times \mathfrak{osp}(2p|2q) \end{array} \right.$$

Reciprocity pair on P(V):

$$\begin{array}{ccc} (G, & \mathfrak{g}') \\ \cup & \cap \\ (H, & \mathfrak{h}') \end{array}$$

$$P(\mathbb{C}^n \otimes \mathbb{C}^{p|q}) = \left\{ \begin{array}{ll} \bigoplus_{\lambda} V_{\lambda}^n \otimes V_{\lambda'}^{p|q} & : & \mathrm{GL}_n \times \mathfrak{gl}(p|q) \\ \bigoplus_{\mu} V_{\mu}^n \otimes V_{\mu'}^{p|q} & : & \mathrm{Sp}_n \times \mathfrak{osp}(2p|2q) \end{array} \right.$$

Reciprocity pair on P(V):

$$\begin{matrix} (G, & \mathfrak{g}') \\ \cup & \cap \\ (H, & \mathfrak{h}') \end{matrix}$$

 $H \times \mathfrak{g}'$ super MF $\Leftrightarrow \forall \lambda$: $Res_H^G(V_\lambda)$ mf.

$$P(\mathbb{C}^n \otimes \mathbb{C}^{p|q}) = \left\{ \begin{array}{ll} \bigoplus_{\lambda} V_{\lambda}^n \otimes V_{\lambda'}^{p|q} & : & \mathrm{GL}_n \times \mathfrak{gl}(p|q) \\ \bigoplus_{\mu} V_{\mu}^n \otimes V_{\mu'}^{p|q} & : & \mathrm{Sp}_n \times \mathfrak{osp}(2p|2q) \end{array} \right.$$

Reciprocity pair on P(V):

$$\begin{array}{ccc} (G, & \mathfrak{g}') \\ \cup & \cap \\ (H, & \mathfrak{h}') \end{array}$$

 $H \times \mathfrak{g}'$ super MF $\Leftrightarrow \forall \lambda$: $Res_H^G(V_\lambda)$ mf.

$$\operatorname{Hom}_{\mathfrak{g}'}(V_{\lambda'}, \operatorname{\mathsf{Res}}_{\mathfrak{g}'}^{\mathfrak{h}'}(V_{\mu'})) = \operatorname{Hom}_{H}(V_{\mu}, \operatorname{\mathsf{Res}}_{H}^{\mathsf{G}}(V_{\lambda}))$$

Super multiplicity-free spaces

$$\lambda \in Par(1|1)$$
: $\lambda = (k, 1')$ hook partition:

Super multiplicity-free spaces

$$\lambda \in Par(1|1)$$
: $\lambda = (k, 1')$ hook partition:

$$\mathrm{O}_n imes \mathfrak{gl}(1|1)$$
 and $\mathrm{Sp}_n imes \mathfrak{gl}(1|1)$ super MF.

Super multiplicity-free spaces

$$\lambda \in Par(1|1)$$
: $\lambda = (k, 1^l)$ hook partition:

$$O_n \times \mathfrak{gl}(1|1)$$
 and $\operatorname{Sp}_n \times \mathfrak{gl}(1|1)$ super MF.

Via reciprocity,
$$Res_{\mathfrak{gl}(p|q)}^{\mathfrak{spo}(2p|2q)}(V_{\lambda})$$
, $Res_{\mathfrak{gl}(p|q)}^{\mathfrak{osp}(2p|2q)}(V_{\lambda})$