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Symplectic manifolds

(M?" W), dw =0
w is a non-degenerate 2-form.

Example 1: R?", with coordinates {x1, 1, - - Xp, ¥n}

w=dxy Ady; + ---dxp A dyp.
Example 2: T2" = R2" /72", with the same formula for w

Example 3: orientable surfaces: S2, T2, %4, g > 1.



Coadjoint orbits

@ Lie group G, its Lie algebra g, the dual g*
@ adjoint representation: Adg: g — g,

@ coadjoint representation (Ad g)* : g* — ¢*
@ on the Lie algebra level:

adX:g—g, adX(Y) :=[X, Y],

(ad X)* : g* — g".

Coadjoint orbit:

O(n) = {(Adg~")*(n)| g € G}.




Coadjoint orbits are symplectic

° O(n) = G/Gy,
° T,0(n) = {(ad X)™n, | X € g}
© wy((ad X)™n, (ad Y)™n) := (n,[X, Y])

S? is diffeomorphic to the coadjoint orbit in so(3)* \

Complex Grassmannian U(m + n)/U(m) x U(n)

The adjoint orbit of diag(i,---i,—i,--- — i) in su(m+ n) is
U(m+ n)/U(m) x U(n).

In particular, complex projective space CP”
CP"=U(n+1)/U(1) x U(n) is a coadjoint orbit.




Symplectomorphism group Symp(M, w)

Symp(M, w) = {f € Diff (M) | ffw = w}.



Symp(M, w) is infinite dimensional

@ H:R? - Ris a function of 2 variables.

@ Define oM oM
_qomnon 2
(XH)P_(aypa (ax)P)aPER .

@ Xy is tangent to the level sets H~(c)
@ gy(t) is an integral curve R?:

9p(0) = P, F9p(0) = (K)ot

F : R? — R? is area preserving

F(p) := gn(1)

Follows from the Cartan formula
Lxw = ixdw + d(ixw).

Conclusion: Any smooth function H defines F which is area
preserving (symplectic, hamiltonian)



The group Ham(M, w)

@ v € Ham(M,w), if ¢ = 11, 1t € Sympy(M,w), 0 <t <1, 9 = id
and J
I.X[w = dHt, aﬂ}t = Xt @) lf}t,Xt M= TM

@ Ham(M,w) is a normal subgroup in Symp(M, w),



@ Gromov: Symp,(S? x S?,wq) ~ SO(3) x SO(3),
© Abreu-Anjos, McDuff:

Tk Sympy(S? x S%,wy) @ Q # 0

forA>1,k=1,2,3,4m, m e Zis the largest < A, and

© the generator in degree 1 is represented by S'-action, in degree 3
by 2 actions of SO(3), and the generator in degree 4m is
"expressed" in terms of the previous ones.

Conclusion and question

@ The rational homotopy of Symp,(S? x S2,w,) is determined by
the action of compact Lie subgroup SO(3) x SO(3),

@ : Question: are there analogous statements for other closed
(M, w) with symplectic actions of compact Lie groups?




How much of the rational homotopy of G remains

visible in the rational homotopy of Ham(M, w)?

We are given:
G —» Ham(M,w).

When
m(G) ® Q — m(Ham(M,w)) ® Q

is injective?



Topology of Symp(M, w)

Classifying space

@ § - topological group,
@ Borel fibration
§— ES— BS=ES/S
@ classifying space BS
® mx(§) = mk+1(B9)

<

Examples of classifying spaces
@ BZ? =T? = R?/72,
@ Hopfbundle S' — s2™1 — CP”,

SLcSc...ct...c8®

is contractible, thus BS' = CP>

\




Understanding topology of Ham(M, w) via hamiltonian

bundles

@ Hamiltonian bundles
M,w) - E—B

(the structure group G is a (sub)group Ham(M, w))
@ Classifying spaces of G-bundles

M — M

l |

EXGM —_— MG:EGXGM

! !

B I BG



Characteristic classes of hamiltonian fiber bundles

M — M

| |

E — 5 EGxgM

| l

B—f> BG

G = Ham(M, w), f*H*(BHam(M,w)) C H*(B)



Coupling form and hamiltonian characteristic classes

Objects:
@ (M,w) a closed symplectic manifold of dimension 2n
°

Mw) —— E "> B
a Hamiltonian fibration over a simply connected base.

Coupling class

A cohomology class Q € H?(E) uniquely defined by:
i"Q = [w], m(Q™") = 0.

It is called the coupling class.

The fibre integration is functorial = the coupling class is natural
— the characteristic classes of Hamiltonian fibration:

uk(E) = m(Q"K) € H?X(B).



Fiber integration (for smooth fiber bundles)

dmM = n,dmE = n+ k.
/W*ﬁsz/BAm%VﬁGQ*(B)
E B

md =dm = m : H*(E) —» H*~4mM(pB)

m is not a ring homomorphism, but

m(m* BA W) =B Amp



Fiber integration (general)

M — s FE_",B
The Leray-Serre spectral sequence EP9 yields

HK(E) —P— EX" % EJ" = HY(B, H'(F)) = H¥(B)

m = inclo pr.



Basic questions on p(E)

@ Are they non-trivial?

@ Are they algebraically independent in the cohomology ring
H*(BHam(M, w))?



Results of Reznikov, 1997

If (M,w) = (CP",wcan), then p are algebraically independent in
H*(BHam(CP", wean)) fork =2, ...,n+ 1.

Reznikov’s conjecture

The hamiltonian characteristic classes 1 are algebraically
independent in the cohomology algebra of the classifying space
BHam(M:;) of the coadjoint orbit M, of a compact Lie group.

Here and in the sequel:
@ G- acompact Lie group, g - the Lie algebra of G,
@ {cgrand M; = G- £ C g* is a coadjoint orbit.



A corollary to the Reznikov conjecture

Conjectural theorem

Let G be a compact simple Lie group. For any & € g* the coadjoint orbit
M of ¢ satisfies the following. The homomorphism

H*(BHam(M;)) — H*(BG) induced by the action is surjective and its
image is generated by the classes .




Results: Reznikov conjecture is true generically

Let G be a compact semisimple Lie group and let
K :={k € N|mx(BG) ® Q # 0}.

There exists a nonempty Zariski open subset A C g* in the dual of the
Lie algebra of G such that for any £ € A the coadjoint orbit M; of &
satisfies the following. The classes ux € H**(BHam(M;)) are
algebraically independent for k € XK.

Let G be a compact simple Lie group different from SO(4k) There
exists a nonempty Zariski open subset A C g* in the dual of the Lie
algebra of G such that for any £ € A the coadjoint orbit Mg of ¢ satisfies
the following. The homomorphism H*(BHam(M;)) — H*(BG) induced
by the action is surjective and its image is generated by the classes .




Theorem 1: method of proof

@ calculate the characteristic classes p for the universal fibration
M: — BG¢ = EG xg M: — BG.

@ Use the fact that the cohomology ring H*(BG) is a polynomial ring
generated by elements with degrees in X. This follows from
results about cohomology of classifying spaces and basic rational
homotopy theory.

H*(BG) = S(g*)® = H*(BT)"

where W = W(G, T) is the Weyl group.



Proof of Theorem 1: case of flag manifolds

Let G be a compact and connected semisimple group. Let w be a
generic homogeneous symplectic form on the flag manifold G/ T. Then
for a rationally nontrivial homotopy class f: S?¢ — BG the induced
Hamiltonian bundle has a nontrivial class pu.




Proof of the Lemma

The pullback diagram for G/ T

G/T —— G/T

I !

E —— BT

nl pl

Sk~ 5 BG,




Proof of the Lemma: The cohomology of E

For a generator o € H?(S%¢) o = f*(a) for some a € H?¢(BG), =
k > 1. Since

H*(BT) = R[X, ..., X]],| = rank G, | Xj| = 2

and A

(o) = (f*(a)) = £(p*(a))
—> H*(E) is generated by degree two classes. Moreover, the
inclusion of the fibre induces an isomorphism

H?(E) = H*(G/T).



Proof of the Lemma: generic symplectic forms

@ dm G/T =2n = dim E =2(n+ k)
@ an algebraic map H?(E) — H>("K)(E) =R, a — a™+k
° HZ(E) = <u1a"'a ul)v |U,’| =2
— there exists a Zariski open subset Z ¢ H?(E)
ZcC H*(E),Z={ac H*E)|a""" #0}

if there is just one class with nontrivial highest power. Observe that the
symmetric map

H2(E)?(H) 5 a1 @ - @ appk — ar - ... - @ksn € HK(E)

is nontrivial as H*(E) is generated in dimension 2 and E is closed and
oriented. Applying polarization, the map

H?(E) 5 ars a™k ¢ H™k(E)

is nontrivial.



Proof of the Lemma: generic symplectic forms,

completion of proof

Choose a G-invariant symplectic form w € Q?(G/T) such that the
associated coupling form

Qe Zc H*E).

Then Q™K -£ 0 and hence

<Mk(E), [82k]> _ <7T!(Qn+k)’ [Ssz _ <Qn+k7 [E]> £ 0.



Corollary 2: algebraic independence of

Let X = {k € N|mx(BG) ® Q # 0}. For a generic homogeneous
symplectic form on a flag manifold G/ T the classes

uk € H?*(BHam(G/T)) are algebraically independent for k € X.
Moreover, these classes cannot be generated by classes of smaller
degrees.




Proof of Corollary 2
G/T — G/T

| |

E —— BT

| !

s ', BG
(uk(E), [$7)) #0 —
1k cannot be expressed as polynomials of generators of smaller
degrees, and
H*(BG) = H*(BT)W = RI[f,, ..., f]
Let A C g* be defined as
A={¢eg M= G/T},Z C H(G/T)

The intersection of the (Zariski) open and dense subsets A x Z for
each k € X has the required properties.



Proof of Theorem 1: general case

H+(BG)

H*(BG) = S(g*)% = S(t")"
for the Weyl group W = W(G, T), T ¢ G a maximal torus in G.

Invariant polynomials for M
Every characteristic class px € H*(BG) for a coadjoint orbit M, £ € g*
determines an invariant polynomial p¢ x € S(g*)@

@ X € g afundamental vector field of a circle action on M;

@ cx : BS' = CP> — BG the classifying map;

© define

| A\

Pek(X) = (k(1k), CP*) € R
and extend onto g by g = Ug Ad g(t).




G-invariance of p; x

Formula (Kedra-McDuff, Geom. Top. 2005)

pex(X) = (~1) (”*k) /(X Ad())< volg.




Proof of Theorem 1, completion

@ Classes u are algebraically independent in H*(BG) for a generic
¢ defining a flag manifold.

@ An algebraic independence is an open condition

° pek = (1) (”+k> /<x Ad:(€))* volg

are non-trivial
@ P« are algebraically independent for a generic £ € g* and k € K
@ (1) — (4) = ux as well, because of the formula

Pek(X) = (cx(uk). CP¥) € R



Example 1: coadjoint orbits of SU(n)

Reznikov: the classes i are algebraically independent in
H*(BHam(CP"~1)) for k =2,...n = these classes are also
algebraically independent for any coadjoint orbit of SU(n) which is
close to CP"1,
After the identification of coadjoint and adjoint orbits via the Killing
form:
the complex projective space CP"~ ' is the adjoint orbit of the diagonal
matrix

¢ =diag[—i,—i,...,—i,(n—1)i] € su(n).

The orbit of an element ¢’ from a suitably small neighbourhood of ¢ has
the same property.



The failure of the algebraic independence - discussion

Proposition 1

Let G be a compact Lie group and let m € N be a number for which
mom(BG) ® Q = H*™(BG; Q) = Q. Let u € S(g*)€ be a nontrivial
invariant polynomial of degree m. The class pum € H*™(BG) is trivial for
the coadjoint orbit M if and only if u(¢) = 0.




Proof of Proposition 1

Assumptions +
H*(BG) = S(g")®

u is unigue up to a constant.

Example

H*(BSU(n)) = Q[ua, ..., up], |ui| = 2i
Forgetting the grading we get

H*(BSU(n)) = S(su(n)*)SU"

and generators u; correspond to the invariant polynomials of degrees /,
which are defined uniquely up to a constant.




Proof of Proposition 1, continued

pe,m(X) can be considered as a bi-invariant polynomial on g ® g* =
there exists a degree m invariant polynomial v on g such that

pe,m(X) = u(§) - v(X).

pe,m(—) is nontrivial for a generic ¢ = v is nonzero. Hence p¢ m(X)
is trivial if and only if u(¢) = 0.



A counterexample to the Reznikov conjecture

Proposition 2

The class jiz € H8(BSU(n)) is trivial for the adjoint orbit of the diagonal
matrix diag[Xi, . .., Xp] € su(n) if and only if >° X® = 0. In particular,
the class uj is trivial for the grassmannian G(m,2m) of m-planes in
c2m,

| \

Explicit example

G(m,2m) = SU(2m) - X, X = diag[i, ..., I, —i, ..., —]

This follows since S(su(n))SY(" is generated by polynomials of the

form
X=X

where X; € C are the eigenvalues of the matrix X. Thus, any invariant
polynomial of degree 3 is equal to X,-3 (up to a constant). By
Proposition 2 and the fact that X is a generic zero of > X,>°’, we get
u(¢) = 0 for &, the dual of X, and, therefore, uz = 0 for M. = G(m,2m).



Zariski open subsets in g*

o
A={cct|M=G/T)

@ C consistst of £ € t* such that 1, asso.with M are algebraically
independent.

A and C do not contain each other.
SO(2n)/U(n) — E — S2"
pn # 0

—
n is non-trivial for SO(2n)/H, where

H=U(n)x..xUng),n +---ng=n.
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