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Symplectic manifolds

(M2n, ω), dω = 0

ω is a non-degenerate 2-form.

Example 1: R2n, with coordinates {x1, y1, · · · xn, yn}

ω = dx1 ∧ dy1 + · · · dxn ∧ dyn.

Example 2: T2n = R2n/Z2n, with the same formula for ω

Example 3: orientable surfaces: S2,T2,Σg , g > 1.



Coadjoint orbits

Lie group G, its Lie algebra g, the dual g∗

adjoint representation: Ad g : g→ g,
coadjoint representation (Ad g)∗ : g∗ → g∗

on the Lie algebra level:

ad X : g→ g, ad X (Y ) := [X ,Y ],

(ad X )∗ : g∗ → g∗.

Coadjoint orbit:

O(η) = {(Ad g−1)∗(η) |g ∈ G}.



Coadjoint orbits are symplectic

O(η) ∼= G/Gη,
TηO(η) = {(ad X )∗η, |X ∈ g}
ωη((ad X )∗η, (ad Y )∗η) := 〈η, [X ,Y ]〉

Example - S2

S2 is diffeomorphic to the coadjoint orbit in so(3)∗

Complex Grassmannian U(m + n)/U(m)× U(n)
The adjoint orbit of diag(i , · · · i ,−i , · · · − i) in su(m + n) is
U(m + n)/U(m)× U(n).

In particular, complex projective space CPn

CPn = U(n + 1)/U(1)× U(n) is a coadjoint orbit.



Symplectomorphism group Symp(M, ω)

Symp(M, ω) = {f ∈ Diff (M) | f ∗ω = ω}.



Symp(M, ω) is infinite dimensional

H : R2 → R is a function of 2 variables.
Define

(XH)p = (
∂H
∂y p

,−(
∂H
∂x

)p), p ∈ R2.

XH is tangent to the level sets H−1(c)
gp(t) is an integral curve R2:

gp(0) = p,
d
dt

gp(t) = (XH)g(t)

F : R2 → R2 is area preserving

F (p) := gp(1)

Follows from the Cartan formula

LXω = iX dω + d(iXω).

Conclusion: Any smooth function H defines F which is area
preserving (symplectic, hamiltonian)



The group Ham(M, ω)

ϕ ∈ Ham(M, ω), if ϕ = ψ1, ψt ∈ Symp0(M, ω), 0 ≤ t ≤ 1, ψ0 = id
and

iXtω = dHt ,
d
dt
ψt = Xt ◦ ψt ,Xt : M → TM

Ham(M, ω) is a normal subgroup in Symp(M, ω),



Motivation:

1 Gromov: Symp0(S2 × S2, ω1) ' SO(3)× SO(3),
2 Abreu-Anjos, McDuff:

πk Symp0(S2 × S2, ωλ)⊗Q 6= 0

for λ > 1, k = 1,2,3,4m, m ∈ Z is the largest < λ, and
3 the generator in degree 1 is represented by S1-action, in degree 3

by 2 actions of SO(3), and the generator in degree 4m is
"expressed" in terms of the previous ones.

Conclusion and question

The rational homotopy of Symp0(S2 × S2, ωλ) is determined by
the action of compact Lie subgroup SO(3)× SO(3),
: Question: are there analogous statements for other closed
(M, ω) with symplectic actions of compact Lie groups?



How much of the rational homotopy of G remains
visible in the rational homotopy of Ham(M, ω)?

We are given:
G→ Ham(M, ω).

When
π∗(G)⊗Q→ π∗(Ham(M, ω))⊗Q

is injective?



Topology of Symp(M, ω)

Classifying space
G - topological group,
Borel fibration

G→ EG→ BG = EG/G

classifying space BG

πk (G) = πk+1(BG)

Examples of classifying spaces

BZ2 = T2 = R2/Z2,
Hopf bundle S1 → S2n+1 → CPn,

S3 ⊂ S5 ⊂ · · · ⊂ S2n+1 · · · ⊂ S∞

is contractible, thus BS1 = CP∞



Understanding topology of Ham(M, ω) via hamiltonian
bundles

Hamiltonian bundles

(M, ω)→ E → B

(the structure group G is a (sub)group Ham(M, ω))
Classifying spaces of G-bundles

M =−−−−→ My y
E ×G M −−−−→ MG = EG ×G My y

B f−−−−→ BG



Characteristic classes of hamiltonian fiber bundles

M =−−−−→ My y
E −−−−→ EG ×G My y
B f−−−−→ BG

G = Ham(M, ω), f ∗H∗(B Ham(M, ω)) ⊂ H∗(B)



Coupling form and hamiltonian characteristic classes

Objects:
(M, ω) a closed symplectic manifold of dimension 2n

(M, ω)
i−−−−→ E π−−−−→ B

a Hamiltonian fibration over a simply connected base.

Coupling class

A cohomology class Ω ∈ H2(E) uniquely defined by:

i∗Ω = [ω], π!(Ωn+1) = 0.

It is called the coupling class.

The fibre integration is functorial =⇒ the coupling class is natural
=⇒ the characteristic classes of Hamiltonian fibration:

µk (E) = π!(Ωn+k ) ∈ H2k (B).



Fiber integration (for smooth fiber bundles)

M i−−−−→ E π−−−−→ B
dim M = n,dim E = n + k .∫

E
π∗β ∧ γ =

∫
B
β ∧ π!γ,∀β ∈ Ω∗(B)

π!d = dπ! =⇒ π! : H∗(E)→ H∗−dim M(B)

π! is not a ring homomorphism, but

π!(π
∗β ∧ µ) = β ∧ π!µ



Fiber integration (general)

Mn i−−−−→ E π−−−−→ B
The Leray-Serre spectral sequence Ep,q

r yields

Hn+k (E)
pr−−−−→ Ek ,n

∞
incl−−−−→ Ek ,n

2 = Hk (B,Hn(F )) = Hk (B)

π! = incl ◦ pr .



Basic questions on µk(E)

Are they non-trivial?
Are they algebraically independent in the cohomology ring
H∗(B Ham(M, ω))?



Results of Reznikov, 1997

If (M, ω) = (CPn, ωcan), then µk are algebraically independent in
H∗(B Ham(CPn, ωcan)) for k = 2, ...,n + 1.

Reznikov’s conjecture
The hamiltonian characteristic classes µk are algebraically
independent in the cohomology algebra of the classifying space
B Ham(Mξ) of the coadjoint orbit Mξ of a compact Lie group.

Here and in the sequel:
G - a compact Lie group, g - the Lie algebra of G,
ξ ∈ g∗ and Mξ = G · ξ ⊂ g∗ is a coadjoint orbit.



A corollary to the Reznikov conjecture

Conjectural theorem
Let G be a compact simple Lie group. For any ξ ∈ g∗ the coadjoint orbit
Mξ of ξ satisfies the following. The homomorphism
H∗(B Ham(Mξ))→ H∗(BG) induced by the action is surjective and its
image is generated by the classes µk .



Results: Reznikov conjecture is true generically

Theorem 1
Let G be a compact semisimple Lie group and let

K := {k ∈ N |π2k (BG)⊗Q 6= 0}.

There exists a nonempty Zariski open subset A ⊂ g∗ in the dual of the
Lie algebra of G such that for any ξ ∈ A the coadjoint orbit Mξ of ξ
satisfies the following. The classes µk ∈ H2k (B Ham(Mξ)) are
algebraically independent for k ∈ K.

Corollary
Let G be a compact simple Lie group different from SO(4k) There
exists a nonempty Zariski open subset A ⊂ g∗ in the dual of the Lie
algebra of G such that for any ξ ∈ A the coadjoint orbit Mξ of ξ satisfies
the following. The homomorphism H∗(B Ham(Mξ))→ H∗(BG) induced
by the action is surjective and its image is generated by the classes µk .



Theorem 1: method of proof

calculate the characteristic classes µk for the universal fibration

Mξ → BGξ = EG ×G Mξ → BG.

Use the fact that the cohomology ring H∗(BG) is a polynomial ring
generated by elements with degrees in K. This follows from
results about cohomology of classifying spaces and basic rational
homotopy theory.

H∗(BG) ∼= S(g∗)G ∼= H∗(BT )W

where W = W (G,T ) is the Weyl group.



Proof of Theorem 1: case of flag manifolds

Lemma
Let G be a compact and connected semisimple group. Let ω be a
generic homogeneous symplectic form on the flag manifold G/T . Then
for a rationally nontrivial homotopy class f : S2k → BG the induced
Hamiltonian bundle has a nontrivial class µk .



Proof of the Lemma

The pullback diagram for G/T

G/T =−−−−→ G/Ty y
E f̂−−−−→ BT

π

y p
y

S2k f−−−−→ BG,



Proof of the Lemma: The cohomology of E

For a generator σ ∈ H2k (S2k ) σ = f ∗(α) for some α ∈ H2k (BG), =⇒
k > 1. Since

H∗(BT ) ∼= R[X1, ...,Xl ], l = rank G, |Xi | = 2

and
π∗(σ) = π∗(f ∗(α)) = f̂ ∗(p∗(α))

=⇒ H∗(E) is generated by degree two classes. Moreover, the
inclusion of the fibre induces an isomorphism

H2(E) ∼= H2(G/T ).



Proof of the Lemma: generic symplectic forms

dim G/T = 2n =⇒ dim E = 2(n + k)

an algebraic map H2(E)→ H2(n+k)(E) = R,a→ an+k

H2(E) = 〈u1, ...,ul〉, |ui | = 2

=⇒ there exists a Zariski open subset Z ⊂ H2(E)

Z ⊂ H2(E),Z = {a ∈ H2(E) |an+k 6= 0}

if there is just one class with nontrivial highest power. Observe that the
symmetric map

H2(E)⊗(n+k) 3 a1 ⊗ · · · ⊗ an+k 7→ a1 · . . . · ak+n ∈ Hn+k (E)

is nontrivial as H∗(E) is generated in dimension 2 and E is closed and
oriented. Applying polarization, the map

H2(E) 3 a 7→ an+k ∈ Hn+k (E)

is nontrivial.



Proof of the Lemma: generic symplectic forms,
completion of proof

Choose a G-invariant symplectic form ω ∈ Ω2(G/T ) such that the
associated coupling form

Ω ∈ Z ⊂ H2(E).

Then Ωn+k 6= 0 and hence〈
µk (E),

[
S2k

]〉
=
〈
π!(Ωn+k ),

[
S2k

]〉
=
〈

Ωn+k , [E ]
〉
6= 0.



Corollary 2: algebraic independence of µk

Corollary 2
Let K = {k ∈ N |π2k (BG)⊗Q 6= 0}. For a generic homogeneous
symplectic form on a flag manifold G/T the classes
µk ∈ H2k (B Ham(G/T )) are algebraically independent for k ∈ K.
Moreover, these classes cannot be generated by classes of smaller
degrees.



Proof of Corollary 2

G/T =−−−−→ G/Ty y
E −−−−→ BTy y

S2k f−−−−→ BG
〈µk (E), [S2k ]〉 6= 0 =⇒

µk cannot be expressed as polynomials of generators of smaller
degrees, and

H∗(BG) ∼= H∗(BT )W ∼= R[f1, ..., fl ]

Let A ⊂ g∗ be defined as

A = {ξ ∈ g∗ |Mξ
∼= G/T},Z ⊂ H2(G/T )

The intersection of the (Zariski) open and dense subsets A× Z for
each k ∈ K has the required properties.



Proof of Theorem 1: general case

H∗(BG)

H∗(BG) ∼= S(g∗)G ∼= S(t∗)W

for the Weyl group W = W (G,T ), T ⊂ G a maximal torus in G.

Invariant polynomials for Mξ

Every characteristic class µk ∈ H∗(BG) for a coadjoint orbit Mξ, ξ ∈ g∗

determines an invariant polynomial pξ,k ∈ S(g∗)G

1 X ∈ g a fundamental vector field of a circle action on Mξ;
2 cX : BS1 = CP∞ → BG the classifying map;
3 define

pξ,k (X ) = 〈c∗X (µk ),CPk 〉 ∈ R

and extend onto g by g = ∪g Ad g(t).



G-invariance of pξ,k

Formula (Kȩdra-McDuff, Geom. Top. 2005)

pξ,k (X ) = (−1)k
(

n + k
k

)
·
∫

G

〈
X ,Ad∗g(ξ)

〉k volG .



Proof of Theorem 1, completion

1 Classes µk are algebraically independent in H∗(BG) for a generic
ξ defining a flag manifold.

2 An algebraic independence is an open condition
3

pξ,k = (−1)k
(

n + k
k

)
·
∫

G

〈
X ,Ad∗g(ξ)

〉k volG

are non-trivial
4 pξ,k are algebraically independent for a generic ξ ∈ g∗ and k ∈ K

5 (1)− (4) =⇒ µk as well, because of the formula

pξ,k (X ) = 〈c∗X (µk ),CPk 〉 ∈ R



Example 1: coadjoint orbits of SU(n)

Reznikov: the classes µk are algebraically independent in
H∗(B Ham(CPn−1)) for k = 2, . . .n =⇒ these classes are also
algebraically independent for any coadjoint orbit of SU(n) which is
close to CPn−1.
After the identification of coadjoint and adjoint orbits via the Killing
form:
the complex projective space CPn−1 is the adjoint orbit of the diagonal
matrix

ξ = diag[−i ,−i , . . . ,−i , (n − 1)i ] ∈ su(n).

The orbit of an element ξ′ from a suitably small neighbourhood of ξ has
the same property.



The failure of the algebraic independence - discussion

Proposition 1
Let G be a compact Lie group and let m ∈ N be a number for which
π2m(BG)⊗Q = H2m(BG;Q) = Q. Let u ∈ S(g∗)G be a nontrivial
invariant polynomial of degree m. The class µm ∈ H2m(BG) is trivial for
the coadjoint orbit Mξ if and only if u(ξ) = 0.



Proof of Proposition 1

Assumptions +
H∗(BG) = S(g∗)G

=⇒

u is unique up to a constant.

Example:

H∗(BSU(n)) = Q[u2, ...,un], |ui | = 2i

Forgetting the grading we get

H∗(BSU(n)) ∼= S(su(n)∗)SU(n)

and generators ui correspond to the invariant polynomials of degrees i ,
which are defined uniquely up to a constant.



Proof of Proposition 1, continued

pξ,m(X ) can be considered as a bi-invariant polynomial on g⊗ g∗ =⇒
there exists a degree m invariant polynomial v on g such that

pξ,m(X ) = u(ξ) · v(X ).

pξ,m(−) is nontrivial for a generic ξ =⇒ v is nonzero. Hence pξ,m(X )
is trivial if and only if u(ξ) = 0.



A counterexample to the Reznikov conjecture

Proposition 2

The class µ3 ∈ H6(BSU(n)) is trivial for the adjoint orbit of the diagonal
matrix diag[X1, . . . ,Xn] ∈ su(n) if and only if

∑
X 3

i = 0. In particular,
the class µ3 is trivial for the grassmannian G(m,2m) of m-planes in
C2m.

Explicit example

G(m,2m) = SU(2m) · X ,X = diag[i , ..., i ,−i , ...,−i]

This follows since S(su(n))SU(n) is generated by polynomials of the
form

X →
∑

X k
i

where Xi ∈ C are the eigenvalues of the matrix X . Thus, any invariant
polynomial of degree 3 is equal to

∑
X 3

i (up to a constant). By
Proposition 2 and the fact that X is a generic zero of

∑
X 3

i , we get
u(ξ) = 0 for ξ, the dual of X , and, therefore, µ3 = 0 for Mξ = G(m,2m).



Zariski open subsets in g∗

1

A = {ξ ∈ t∗ |Mξ
∼= G/T}

2 C consistst of ξ ∈ t∗ such that µk asso.with Mξ are algebraically
independent.

A and C do not contain each other.

Example

SO(2n)/U(n)→ E → S2n

µn 6= 0

=⇒

µn is non-trivial for SO(2n)/H, where

H = U(n1)× ...× U(nk ),n1 + · · · nk = n.
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