Symplectic varieties with invariant Lagrangian subvarieties

Dmitry A. Timashev ¹ Vladimir S. Zhgoon²

¹Faculty of Mechanics and Mathematics Lomonosov Moscow State University

²Research Institute of System Studies Russian Academy of Sciences Moscow

We consider symplectic algebraic varieties equipped with a Hamiltonian reductive group action which contain an invariant Lagrangian subvariety.

Main Thesis

Hamiltonian symplectic varieties with invariant Lagrangian subvarieties behave similar to cotangent bundles.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

We consider symplectic algebraic varieties equipped with a Hamiltonian reductive group action which contain an invariant Lagrangian subvariety.

Main Thesis

Hamiltonian symplectic varieties with invariant Lagrangian subvarieties behave similar to cotangent bundles.

Preliminaries and motivation

3 Generalizations and applications

Let G be a reductive group, B be a Borel subgroup, X be an algebraic G-variety.

Definition

The complexity c(X) is the codimension of general *B*-orbits in *X*.

It can also be defined as the minimal codimension of *B*-orbits in *X* and, by the Rosenlicht theorem, coincides with the transcendence degree (over \Bbbk) of the field $\Bbbk(X)^B$ of *B*-invariant rational functions.

Definition

The weight lattice of X is the set $\Lambda(X)$ of eigenweights of all (nonzero) B-semi-invariant rational functions on X.

Definition

Let G be a reductive group, B be a Borel subgroup, X be an algebraic G-variety.

Definition

The complexity c(X) is the codimension of general *B*-orbits in *X*.

It can also be defined as the minimal codimension of *B*-orbits in *X* and, by the Rosenlicht theorem, coincides with the transcendence degree (over \Bbbk) of the field $\Bbbk(X)^B$ of *B*-invariant rational functions.

Definition

The weight lattice of X is the set $\Lambda(X)$ of eigenweights of all (nonzero) B-semi-invariant rational functions on X.

Definition

Let G be a reductive group, B be a Borel subgroup, X be an algebraic G-variety.

Definition

The complexity c(X) is the codimension of general *B*-orbits in *X*.

It can also be defined as the minimal codimension of *B*-orbits in *X* and, by the Rosenlicht theorem, coincides with the transcendence degree (over \Bbbk) of the field $\Bbbk(X)^B$ of *B*-invariant rational functions.

Definition

The weight lattice of X is the set $\Lambda(X)$ of eigenweights of all (nonzero) *B*-semi-invariant rational functions on X.

Definition

Let G be a reductive group, B be a Borel subgroup, X be an algebraic G-variety.

Definition

The complexity c(X) is the codimension of general *B*-orbits in *X*.

It can also be defined as the minimal codimension of *B*-orbits in *X* and, by the Rosenlicht theorem, coincides with the transcendence degree (over \Bbbk) of the field $\Bbbk(X)^B$ of *B*-invariant rational functions.

Definition

The weight lattice of X is the set $\Lambda(X)$ of eigenweights of all (nonzero) *B*-semi-invariant rational functions on X.

Definition

Our work was motivated by the following result of Panyushev (1999).

Theorem

Let X be a smooth G-variety and $Y \subset X$ be a smooth G-subvariety. Denote by N = N(X/Y) and $N^* = N^*(X/Y)$ the normal and conormal bundle of Y in X, respectively. Then $c(X) = c(N) = c(N^*)$ and $r(X) = r(N) = r(N^*)$.

Note: N^* is a Lagrangian subvariety T^*X .

Question (Panyushev 1999): Is this theorem true for any G-invariant Lagrangian subvariety S in T^*X ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Our work was motivated by the following result of Panyushev (1999).

Theorem

Let X be a smooth G-variety and $Y \subset X$ be a smooth G-subvariety. Denote by N = N(X/Y) and $N^* = N^*(X/Y)$ the normal and conormal bundle of Y in X, respectively. Then $c(X) = c(N) = c(N^*)$ and $r(X) = r(N) = r(N^*)$.

Note: N^* is a Lagrangian subvariety T^*X .

Question (Panyushev 1999): Is this theorem true for any G-invariant Lagrangian subvariety S in T^*X ?

Our work was motivated by the following result of Panyushev (1999).

Theorem

Let X be a smooth G-variety and $Y \subset X$ be a smooth G-subvariety. Denote by N = N(X/Y) and $N^* = N^*(X/Y)$ the normal and conormal bundle of Y in X, respectively. Then $c(X) = c(N) = c(N^*)$ and $r(X) = r(N) = r(N^*)$.

Note: N^* is a Lagrangian subvariety T^*X .

Question (Panyushev 1999): Is this theorem true for any *G*-invariant Lagrangian subvariety *S* in T^*X ?

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- (M,ω), symplectic manifold (over K = R, C) or smooth algebraic variety (over K = C),
 - ω is a nondegenerate closed 2-form on M;
- ∇f , skew gradient of $f: M \supset U \rightarrow \mathbb{K}$, $df(v) = \omega(\nabla f, v), \ \forall v \in TM;$
- $\{f,g\} = \omega(\nabla f, \nabla g)$, Poisson bracket.

A submanifold / smooth algebraic subvariety $S \subseteq M$ is:

- *isotropic* if $\omega|_{T_pS} = 0$, $\forall p \in S$;
- coisotropic if $\omega|_{(T_pS)^{\perp}} = 0$, $\forall p \in S$;
- Lagrangian = isotropic + coisotropic.

- (M, ω), symplectic manifold (over K = R, C) or smooth algebraic variety (over K = C), ω is a nondegenerate closed 2-form on M;
- ∇f , skew gradient of $f: M \supset U \rightarrow \mathbb{K}$, $df(v) = \omega(\nabla f, v), \ \forall v \in TM;$
- $\{f,g\} = \omega(\nabla f, \nabla g)$, Poisson bracket.

A submanifold / smooth algebraic subvariety $S \subseteq M$ is:

- *isotropic* if $\omega|_{T_pS} = 0$, $\forall p \in S$;
- coisotropic if $\omega|_{(T_pS)^{\angle}} = 0$, $\forall p \in S$;
- Lagrangian = isotropic + coisotropic.

- (M,ω), symplectic manifold (over K = R, C) or smooth algebraic variety (over K = C), ω is a nondegenerate closed 2-form on M;
- ∇f , skew gradient of $f: M \supset U \rightarrow \mathbb{K}$, $df(v) = \omega(\nabla f, v), \ \forall v \in TM;$
- $\{f,g\} = \omega(\nabla f, \nabla g)$, Poisson bracket.

A submanifold / smooth algebraic subvariety $S \subseteq M$ is:

- *isotropic* if $\omega|_{T_pS} = 0$, $\forall p \in S$;
- coisotropic if $\omega|_{(T_pS)^{\angle}} = 0$, $\forall p \in S$;
- Lagrangian = isotropic + coisotropic.

- (M,ω), symplectic manifold (over K = R, C) or smooth algebraic variety (over K = C), ω is a nondegenerate closed 2-form on M;
- abla f, skew gradient of $f: M \supset U \rightarrow \mathbb{K}$, $df(v) = \omega(
 abla f, v), \ \forall v \in TM;$
- $\{f,g\} = \omega(\nabla f, \nabla g)$, Poisson bracket.
- A submanifold / smooth algebraic subvariety $S \subseteq M$ is:
 - *isotropic* if $\omega|_{T_pS} = 0$, $\forall p \in S$;
 - coisotropic if $\omega|_{(T_pS)^{\angle}} = 0$, $\forall p \in S$;
 - Lagrangian = isotropic + coisotropic.

- (M, ω), symplectic manifold (over K = R, C) or smooth algebraic variety (over K = C),
 - ω is a nondegenerate closed 2-form on M;
- ∇f , skew gradient of $f: M \supset U \rightarrow \mathbb{K}$, $df(v) = \omega(\nabla f, v), \ \forall v \in TM;$
- $\{f,g\} = \omega(\nabla f, \nabla g)$, Poisson bracket.
- A submanifold / smooth algebraic subvariety $S \subseteq M$ is:
 - *isotropic* if $\omega|_{T_pS} = 0$, $\forall p \in S$;
 - coisotropic if $\omega|_{(T_pS)^{\angle}} = 0$, $\forall p \in S$;
 - Lagrangian = isotropic + coisotropic.

- (M,ω), symplectic manifold (over K = R, C) or smooth algebraic variety (over K = C),
 - ω is a nondegenerate closed 2-form on M;

•
$$\nabla f$$
, skew gradient of $f : M \supset U \rightarrow \mathbb{K}$,
 $df(v) = \omega(\nabla f, v), \forall v \in TM;$

- $\{f,g\} = \omega(\nabla f, \nabla g)$, Poisson bracket.
- A submanifold / smooth algebraic subvariety $S \subseteq M$ is:
 - isotropic if $\omega|_{T_pS} = 0$, $\forall p \in S$;
 - coisotropic if $\omega|_{(T_pS)^{\angle}} = 0$, $\forall p \in S$;
 - Lagrangian = isotropic + coisotropic.

- (M,ω), symplectic manifold (over K = R, C) or smooth algebraic variety (over K = C),
 - ω is a nondegenerate closed 2-form on M;

•
$$\nabla f$$
, skew gradient of $f: M \supset U \rightarrow \mathbb{K}$,
 $df(v) = \omega(\nabla f, v), \ \forall v \in TM;$

- $\{f,g\} = \omega(\nabla f, \nabla g)$, Poisson bracket.
- A submanifold / smooth algebraic subvariety $S \subseteq M$ is:
 - isotropic if $\omega|_{T_pS} = 0$, $\forall p \in S$;

• coisotropic if
$$\omega|_{(T_pS)^{\angle}} = 0$$
, $\forall p \in S$;

• Lagrangian = isotropic + coisotropic.

- (M,ω), symplectic manifold (over K = R, C) or smooth algebraic variety (over K = C),
 - ω is a nondegenerate closed 2-form on M;

•
$$\nabla f$$
, skew gradient of $f: M \supset U \rightarrow \mathbb{K}$,
 $df(v) = \omega(\nabla f, v), \ \forall v \in TM;$

- $\{f,g\} = \omega(\nabla f, \nabla g)$, Poisson bracket.
- A submanifold / smooth algebraic subvariety $S \subseteq M$ is:
 - isotropic if $\omega|_{T_pS} = 0$, $\forall p \in S$;
 - coisotropic if $\omega|_{(T_pS)^{\angle}} = 0$, $\forall p \in S$;
 - Lagrangian = isotropic + coisotropic.

Lie/algebraic group action $G \curvearrowright M$ is Hamiltonian if:

- it preserves ω;
- \exists moment map $\Phi: M \to \mathfrak{g}^*$:

 - $\circ : \nabla(\Phi^*\xi) = \xi_*, \ \forall \xi \in \mathfrak{g}_*$
 - $\sim \langle d_{\theta} \Phi(v), \xi \rangle = \omega(\xi p, v), \forall p \in M, v \in T_{\theta}M;$
 - Notation: $\xi_i(\rho) = \xi \rho = \frac{f_i}{2} |_{t=0} \exp(t\xi) \rho_i$, velocity vectors
- $\{\Phi^*\xi, \Phi^*\eta\} = \Phi^*([\xi, \eta]), \forall \xi, \eta \in \mathfrak{g}.$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|∃ ◇Q⊘

Lie/algebraic group action $G \curvearrowright M$ is Hamiltonian if:

- it preserves ω ;
- \exists moment map $\Phi: M \to \mathfrak{g}^*$:
 - Φ is *G*-equivariant,
 - $abla(\Phi^*\xi)=\xi_*,\ \forall \xi\in \mathfrak{g},$
 - $\langle d_p \Phi(v), \xi \rangle = \omega(\xi p, v), \ \forall p \in M, \ v \in T_p M;$

Notation: $\xi_*(
ho)=\xi
ho=rac{d}{dt}|_{t=0}\exp(t\xi)
ho$, velocity vector.

• $\{\Phi^*\xi, \Phi^*\eta\} = \Phi^*([\xi, \eta]), \forall \xi, \eta \in \mathfrak{g}.$

Lie/algebraic group action $G \curvearrowright M$ is Hamiltonian if:

- it preserves ω ;
- \exists moment map $\Phi : M \to \mathfrak{g}^*$:
 - Φ is G-equivariant,
 - $abla(\Phi^*\xi) = \xi_*, \ \forall \xi \in \mathfrak{g},$
 - $\langle d_p \Phi(v), \xi \rangle = \omega(\xi p, v), \forall p \in M, v \in T_p M;$

Notation: $\xi_*(p) = \xi p = \frac{d}{dt}|_{t=0} \exp(t\xi)p$, velocity vector.

• $\{\Phi^*\xi, \Phi^*\eta\} = \Phi^*([\xi, \eta]), \forall \xi, \eta \in \mathfrak{g}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lie/algebraic group action $G \curvearrowright M$ is Hamiltonian if:

- it preserves ω ;
- \exists moment map $\Phi : M \to \mathfrak{g}^*$:
 - Φ is G-equivariant,
 - $abla(\Phi^*\xi)=\xi_*,\ \forall\xi\in\mathfrak{g},$
 - $\langle d_p \Phi(v), \xi \rangle = \omega(\xi p, v), \forall p \in M, v \in T_p M;$

Notation: $\xi_*(p) = \xi p = \frac{d}{dt}|_{t=0} \exp(t\xi)p$, velocity vector.

• $\{\Phi^*\xi, \Phi^*\eta\} = \Phi^*([\xi, \eta]), \forall \xi, \eta \in \mathfrak{g}.$

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lie/algebraic group action $G \curvearrowright M$ is Hamiltonian if:

- it preserves ω ;
- \exists moment map $\Phi: M \to \mathfrak{g}^*$:
 - Φ is G-equivariant,
 - $abla(\Phi^*\xi) = \xi_*, \ \forall \xi \in \mathfrak{g},$
 - $\langle d_p \Phi(v), \xi \rangle = \omega(\xi p, v), \ \forall p \in M, \ v \in T_p M;$

Notation: $\xi_*(p) = \xi p = \frac{d}{dt}|_{t=0} \exp(t\xi)p$, velocity vector.

• $\{\Phi^*\xi, \Phi^*\eta\} = \Phi^*([\xi, \eta]), \ \forall \xi, \eta \in \mathfrak{g}.$

Example

 $M = T^*X$, $\omega = \sum_i dx_i \wedge dy_i$, x_i are local coordinates on X, y_i are dual coordinates in $T^*_x X$.

 $G \curvearrowright X$ induces Hamiltonian action $G \curvearrowright T^*X$, $\langle \Phi(p), \xi \rangle = \langle p, \xi x \rangle$, $\forall x \in X$, $p \in T^*_x X$, $\xi \in \mathfrak{g}$.

Zero section $S \subset T^*X$ is Lagrangian.

Conormal bundles $N^*(X/Y) = \{p \in T_x^*X \mid x \in Y, \langle p, T_xY \rangle = 0\}$ are Lagrangian for any $Y \subseteq X$.

Example

 $M = T^*X$, $\omega = \sum_i dx_i \wedge dy_i$, x_i are local coordinates on X, y_i are dual coordinates in T^*_xX .

 $G \curvearrowright X$ induces Hamiltonian action $G \curvearrowright T^*X$, $\langle \Phi(p), \xi \rangle = \langle p, \xi x \rangle$, $\forall x \in X$, $p \in T^*_x X$, $\xi \in \mathfrak{g}$.

Zero section $S \subset T^*X$ is Lagrangian.

Conormal bundles $N^*(X/Y) = \{p \in T_x^*X \mid x \in Y, \langle p, T_xY \rangle = 0\}$ are Lagrangian for any $Y \subseteq X$.

D. A. Timashev, V. S. Zhgoon (Moscow)

2012 8 / 22

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

 $M = T^*X$, $\omega = \sum_i dx_i \wedge dy_i$, x_i are local coordinates on X, y_i are dual coordinates in T^*_xX .

 $G \curvearrowright X$ induces Hamiltonian action $G \curvearrowright T^*X$, $\langle \Phi(p), \xi \rangle = \langle p, \xi x \rangle$, $\forall x \in X$, $p \in T^*_x X$, $\xi \in \mathfrak{g}$.

Zero section $S \subset T^*X$ is Lagrangian.

Conormal bundles $N^*(X/Y) = \{p \in T_x^*X \mid x \in Y, \langle p, T_xY \rangle = 0\}$ are Lagrangian for any $Y \subseteq X$.

D. A. Timashev, V. S. Zhgoon (Moscow)

Example

 $M = T^*X$, $\omega = \sum_i dx_i \wedge dy_i$, x_i are local coordinates on X, y_i are dual coordinates in T^*_xX .

 $G \curvearrowright X$ induces Hamiltonian action $G \curvearrowright T^*X$, $\langle \Phi(p), \xi \rangle = \langle p, \xi x \rangle$, $\forall x \in X$, $p \in T^*_x X$, $\xi \in \mathfrak{g}$.

Zero section $S \subset T^*X$ is Lagrangian.

Conormal bundles $N^*(X/Y) = \{p \in T_x^*X \mid x \in Y, \langle p, T_xY \rangle = 0\}$ are Lagrangian for any $Y \subseteq X$.

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume $S \subset M$ Lagrangian.

Darboux–Weinstein Theorem $\implies M \simeq T^*S$ (C^{∞} symplectomorphism) in a neighborhood of S

G compact Lie group, $G \curvearrowright M$ Hamiltonian, *S G*-stable \implies *G*-equivariant local symplectomorphism $M \simeq T^*S$ (B. Kostant)

G reductive algebraic group, *M* Hamiltonian *G*-variety, $S \subset M$ *G*-stable Lagrangian subvariety: *G*-equivariant local symplectomorphism may not exist.

Obstruction: the structure of isotropy representations.

- $G_p \curvearrowright T_p(T^*S) = T_pS \oplus T_p^*S$ splits.
- May happen that T_pS has no G_p -stable complement in T_pM .

Assume $S \subset M$ Lagrangian.

Darboux–Weinstein Theorem $\implies M \simeq T^*S$ (C^{∞} symplectomorphism) in a neighborhood of S

G compact Lie group, $G \curvearrowright M$ Hamiltonian, *S G*-stable \implies *G*-equivariant local symplectomorphism $M \simeq T^*S$ (B. Kostant)

G reductive algebraic group, M Hamiltonian G-variety, $S \subset M$ G-stable Lagrangian subvariety: G-equivariant local symplectomorphism may not exist.

Obstruction: the structure of isotropy representations.

•
$$G_p \curvearrowright T_p(T^*S) = T_pS \oplus T_p^*S$$
 splits.

• May happen that T_pS has no G_p -stable complement in T_pM .

Assume $S \subset M$ Lagrangian.

Darboux–Weinstein Theorem $\implies M \simeq T^*S$ (C^{∞} symplectomorphism) in a neighborhood of S

G compact Lie group, $G \curvearrowright M$ Hamiltonian, S G-stable \Longrightarrow G-equivariant local symplectomorphism $M \simeq T^*S$ (B. Kostant)

G reductive algebraic group, M Hamiltonian G-variety, $S \subset M$ G-stable Lagrangian subvariety: G-equivariant local symplectomorphism may not exist.

Obstruction: the structure of isotropy representations.

- $G_p \curvearrowright T_p(T^*S) = T_pS \oplus T_p^*S$ splits.
- May happen that T_pS has no G_p -stable complement in T_pM .

Assume $S \subset M$ Lagrangian.

Darboux–Weinstein Theorem $\implies M \simeq T^*S$ (C^{∞} symplectomorphism) in a neighborhood of S

G compact Lie group, $G \curvearrowright M$ Hamiltonian, S G-stable \Longrightarrow G-equivariant local symplectomorphism $M \simeq T^*S$ (B. Kostant)

G reductive algebraic group, M Hamiltonian G-variety, $S \subset M$ G-stable Lagrangian subvariety: G-equivariant local symplectomorphism may not exist.

Obstruction: the structure of isotropy representations.

•
$$G_p \curvearrowright T_p(T^*S) = T_pS \oplus T_p^*S$$
 splits.

May happen that T_pS has no G_p-stable complement in T_pM.
 Skip example

2012 9 / 22

Assume $S \subset M$ Lagrangian.

Darboux–Weinstein Theorem $\implies M \simeq T^*S$ (C^{∞} symplectomorphism) in a neighborhood of S

G compact Lie group, $G \curvearrowright M$ Hamiltonian, *S G*-stable \implies *G*-equivariant local symplectomorphism $M \simeq T^*S$ (B. Kostant)

G reductive algebraic group, M Hamiltonian G-variety, $S \subset M$ G-stable Lagrangian subvariety: G-equivariant local symplectomorphism may not exist.

Obstruction: the structure of isotropy representations.

- $G_p \curvearrowright T_p(T^*S) = T_pS \oplus T_p^*S$ splits.
- May happen that T_pS has no G_p -stable complement in T_pM .

🕻 🍽 Skip example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへの

Example: complete conics

Example

 $\mathbb{P}^5 = \mathbb{P}(\text{Sym}_{3 \times 3}(\mathbb{C}))$, space of conics in \mathbb{P}^2 $F \subset \mathbb{P}^5$, set of double lines $X = \text{Bl}_F(\mathbb{P}^5)$, variety of *complete conics* $G = SL_3(\mathbb{C}) \curvearrowright X \supset Y$, the unique closed orbit

Put
$$M = T^*X$$
, $S = N^*(X/Y)$.
 \exists unique $y \in Y$ such that $G_y = \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\}$
 $p \in S_y$ general point $\implies G_p^\circ = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}$
 T_pS has no G_p° -stable complement in T_pM .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: complete conics

Example

$$\begin{split} \mathbb{P}^5 &= \mathbb{P}(\mathsf{Sym}_{3\times 3}(\mathbb{C})), \text{ space of conics in } \mathbb{P}^2 \\ F &\subset \mathbb{P}^5, \text{ set of double lines} \\ X &= \mathsf{Bl}_F(\mathbb{P}^5), \text{ variety of } complete \ conics} \\ G &= SL_3(\mathbb{C}) \frown X \supset Y, \text{ the unique closed orbit} \end{split}$$

Put
$$M = T^*X$$
, $S = N^*(X/Y)$.
 \exists unique $y \in Y$ such that $G_y = \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\}$
 $p \in S_y$ general point $\implies G_p^\circ = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}$
 T_pS has no G_p° -stable complement in T_pM .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Setup

From now on:

M is an irreducible symplectic algebraic variety; *G* is a connected reductive algebraic group, $\mathfrak{g} = \text{Lie } G$; $G \curvearrowright M$ is a Hamiltonian action; $\Phi: M \to \mathfrak{g}^*$ is the moment map.

Notation: $gp = T_p Gp = \{\xi p \mid \xi \in g\}, \forall p \in M$

Setup

From now on:

M is an irreducible symplectic algebraic variety; G is a connected reductive algebraic group, $\mathfrak{g} = \text{Lie } G$; $G \curvearrowright M$ is a Hamiltonian action; $\Phi: M \to \mathfrak{g}^*$ is the moment map.

Notation:
$$\mathfrak{g}p = T_p Gp = \{\xi p \mid \xi \in \mathfrak{g}\}, \forall p \in M$$

Definition

Corank cork $M = \operatorname{rk} \omega|_{(\mathfrak{g}p)^{\angle}}$; Defect def $M = \dim \mathfrak{g}p \cap (\mathfrak{g}p)^{\angle}$ $(p \in M \text{ general point}).$

Properties:

- Ker $d_p \Phi = (\mathfrak{g} p)^{\angle}$;
- $Im d_p \Phi = (\mathfrak{g}_p)^{\perp};$
- dim $\overline{\Phi(M)} = \dim Gp (p \text{ general}) \iff (2)$
- def $M = \dim \overline{\Phi(M)}/G$ (1). (1):
- cork $M = \dim M \dim \overline{\Phi(M)} \dim \overline{\Phi(M)} / G \quad (0), (3), (4);$
- cork $M + def M = \dim M/G$

イロト 不得下 イヨト イヨト

Definition

Corank cork $M = \operatorname{rk} \omega|_{(\mathfrak{g}p)^{\angle}}$; Defect def $M = \dim \mathfrak{g}p \cap (\mathfrak{g}p)^{\angle}$ $(p \in M \text{ general point}).$

Properties:

- Ker $d_p \Phi = (\mathfrak{g} p)^{\angle}$;
- $Im d_p \Phi = (\mathfrak{g}_p)^{\perp};$
- dim $\overline{\Phi(M)}$ = dim Gp (p general) \leftarrow (2)
- def $M = \dim \overline{\Phi(M)}/G \iff (3), (1);$
- cork $M = \dim M \dim \overline{\Phi(M)} \dim \overline{\Phi(M)} / G = (0), (3), (4);$
- cork $M + def M = \dim M/G$

Definition

Corank cork $M = \operatorname{rk} \omega|_{(\mathfrak{g}p)^{\angle}}$; Defect def $M = \dim \mathfrak{g}p \cap (\mathfrak{g}p)^{\angle}$ $(p \in M \text{ general point}).$

Properties:

- Ker $d_p \Phi = (\mathfrak{g} p)^{\angle}$;
- $lm d_p \Phi = (\mathfrak{g}_p)^{\perp};$
- 3 dim $\overline{\Phi(M)}$ = dim *Gp* (*p* general) \iff (2);
- def $M = \dim \overline{\Phi(M)} / G \iff (3), (1);$
- **(a)** cork $M = \dim M \dim \overline{\Phi(M)} \dim \overline{\Phi(M)} / G$ (c), (3), (4)
- cork M + def M = dim M/G

2012 12 / 22

Definition

Corank cork $M = \operatorname{rk} \omega|_{(\mathfrak{g}p)^{\angle}};$ Defect def $M = \dim \mathfrak{g}p \cap (\mathfrak{g}p)^{\angle}$ $(p \in M \text{ general point}).$

Properties:

- Ker $d_p \Phi = (\mathfrak{g} p)^{\angle}$;
- $lm d_p \Phi = (\mathfrak{g}_p)^{\perp};$
- $im \overline{\Phi(M)} = \dim Gp (p \text{ general}) \iff (2);$
- def $M = \dim \overline{\Phi(M)} / G \iff (3), (1);$
- **(a)** cork $M = \dim M \dim \overline{\Phi(M)} \dim \overline{\Phi(M)} / G \iff (6), (3), (4);$

• cork
$$M + \det M = \dim M/G$$

Definition

Corank cork $M = \operatorname{rk} \omega|_{(\mathfrak{g}p)^{\angle}};$ Defect def $M = \dim \mathfrak{g}p \cap (\mathfrak{g}p)^{\angle}$ $(p \in M \text{ general point}).$

Properties:

- Ker $d_p \Phi = (\mathfrak{g} p)^{\angle}$;
- $lm d_p \Phi = (\mathfrak{g}_p)^{\perp};$
- $im \overline{\Phi(M)} = \dim Gp (p \text{ general}) \iff (2);$
- def $M = \dim \overline{\Phi(M)} / G \iff (3), (1);$
- **(a)** cork $M = \dim M \dim \overline{\Phi(M)} \dim \overline{\Phi(M)} / G \iff (6), (3), (4);$
- cork $M + \det M = \dim M/G$.

2012 12 / 22

Definition

Corank cork $M = \operatorname{rk} \omega|_{(\mathfrak{g}p)^{\angle}};$ Defect def $M = \dim \mathfrak{g}p \cap (\mathfrak{g}p)^{\angle}$ $(p \in M \text{ general point}).$

Properties:

- Ker $d_p \Phi = (\mathfrak{g} p)^{\angle}$;
- $lm d_p \Phi = (\mathfrak{g}_p)^{\perp};$
- $one dim \overline{\Phi(M)} = \dim Gp (p \text{ general}) \iff (2);$
- def $M = \dim \overline{\Phi(M)}/G \iff (3), (1);$
- **3** cork $M = \dim M \dim \overline{\Phi(M)} \dim \overline{\Phi(M)} / G \iff (6), (3), (4);$

• cork
$$M + \det M = \dim M/G$$

Definition

Corank cork $M = \operatorname{rk} \omega|_{(\mathfrak{g}p)^{\angle}};$ Defect def $M = \dim \mathfrak{g}p \cap (\mathfrak{g}p)^{\angle}$ $(p \in M \text{ general point}).$

Properties:

- Ker $d_p \Phi = (\mathfrak{g} p)^{\angle}$;
- $lm d_p \Phi = (\mathfrak{g}_p)^{\perp};$
- $one dim \overline{\Phi(M)} = \dim Gp (p \text{ general}) \iff (2);$
- def $M = \dim \overline{\Phi(M)}/G \iff (3), (1);$
- So cork $M = \dim M \dim \overline{\Phi(M)} \dim \overline{\Phi(M)} / G \iff (6), (3), (4);$
- cork $M + \det M = \dim M/G$.

2012 12 / 22

How to formulate an analog of Panyushev's theorem for Hamiltonian varieties?

Answer:

```
Theorem (F.Knop 91)
2c(X) = \operatorname{cork} T^*X, \quad r(X) = \operatorname{def} T^*X.
```

Theorem

Let M be a Hamiltonian G-variety and let $S \subset M$ be an irreducible G-stable Lagrangian subvariety. Then $2c(S) = \operatorname{cork} M$, $r(S) = \operatorname{def} M$.

How to formulate an analog of Panyushev's theorem for Hamiltonian varieties?

Answer:

Theorem (F.Knop 91)

 $2c(X) = \operatorname{cork} T^*X, \quad r(X) = \operatorname{def} T^*X.$

Theorem

Let M be a Hamiltonian G-variety and let $S \subset M$ be an irreducible G-stable Lagrangian subvariety. Then $2c(S) = \operatorname{cork} M$, $r(S) = \operatorname{def} M$.

・同ト (ヨト (ヨト ヨヨ) の()

How to formulate an analog of Panyushev's theorem for Hamiltonian varieties?

Answer:

Theorem (F.Knop 91)

 $2c(X) = \operatorname{cork} T^*X, \quad r(X) = \operatorname{def} T^*X.$

Theorem

Let M be a Hamiltonian G-variety and let $S \subset M$ be an irreducible G-stable Lagrangian subvariety. Then $2c(S) = \operatorname{cork} M$, $r(S) = \operatorname{def} M$.

Main result

Let $S \subset M$ be an irreducible *G*-stable Lagrangian subvariety. $\Phi(S) = \{G\text{-fixed point in } \mathfrak{g}^*\} \iff (1)$ May assume: $\Phi(S) = \{0\}$

Theorem

$$\Phi(M) = \overline{\Phi(T^*S)}$$

Corollary

 $\operatorname{cork} M = \operatorname{cork} T^*S$ $\operatorname{def} M = \operatorname{def} T^*S$ $\operatorname{dim} M/G = \operatorname{dim}(T^*S)/G$

Skip proot

Main result

Let $S \subset M$ be an irreducible *G*-stable Lagrangian subvariety. $\Phi(S) = \{G\text{-fixed point in } \mathfrak{g}^*\} \iff (1)$ May assume: $\Phi(S) = \{0\}$

Theorem

$$\overline{\Phi(M)} = \overline{\Phi(T^*S)}$$

Corollary

 $\operatorname{cork} M = \operatorname{cork} T^*S$ $\operatorname{def} M = \operatorname{def} T^*S$ $\operatorname{dim} M/G = \operatorname{dim}(T^*S)/G$

Skip proof

Main result

Let $S \subset M$ be an irreducible *G*-stable Lagrangian subvariety. $\Phi(S) = \{G\text{-fixed point in } \mathfrak{g}^*\} \iff (1)$ May assume: $\Phi(S) = \{0\}$

Theorem

$$\overline{\Phi(M)} = \overline{\Phi(T^*S)}$$

Corollary

$$\operatorname{cork} M = \operatorname{cork} T^*S$$

 $\operatorname{def} M = \operatorname{def} T^*S$
 $\operatorname{dim} M/G = \operatorname{dim}(T^*S)/G$

► Skip proof

Ideas of the proof

Deformation to the normal bundle

 $\exists \text{ flat family } \widehat{M} \to \mathbb{A}^1 \text{ with fibers} \\ M_c \simeq M, \forall c \neq 0, \\ M_0 \simeq N = N(M/S) \simeq T^*S.$

Poliation of horospheres

Horosphere = orbit of a (fixed) maximal unipotent subgroup $U \subset G$

Suppose *S* is quasiaffine. Denote: $\mathcal{U} \subset T^*S$, conormal bundle to foliation of generic horospheres in *S*; $\mathcal{U} \subset \Phi^{-1}(\mathfrak{u}^{\perp}) = \{(x,\xi) \in T^*S | \langle \mathfrak{u}x, \xi \rangle = 0\}$ $P_0 \subset G$, normalizer of a generic horosphere.

Theorem ([Knop, 1994])

$$\overline{\Phi(\mathcal{U})} = \mathfrak{p}_0^{\perp}, \qquad \overline{G\mathcal{U}} = T^*S, \qquad \overline{\Phi(T^*S)} = G\mathfrak{p}_0^{\perp}.$$

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ideas of the proof

Deformation to the normal bundle

$$\begin{array}{l} \exists \ \text{flat family} \ \widehat{M} \to \mathbb{A}^1 \ \text{with fibers} \\ M_c \simeq M, \ \forall c \neq 0, \\ M_0 \simeq N = N(M/S) \simeq T^*S. \end{array}$$

Poliation of horospheres Horosphere = orbit of a (fixed) maximal unipotent subgroup U ⊂ G

Suppose *S* is quasiaffine. Denote: $\mathcal{U} \subset T^*S$, conormal bundle to foliation of generic horospheres in *S*; $\mathcal{U} \subset \Phi^{-1}(\mathfrak{u}^{\perp}) = \{(x,\xi) \in T^*S | \langle \mathfrak{u}x, \xi \rangle = 0\}$ $P_0 \subset G$, normalizer of a generic horosphere.

Theorem ([Knop, 1994])

$$\overline{\Phi(\mathcal{U})} = \mathfrak{p}_0^{\perp}, \qquad \overline{G\mathcal{U}} = T^*S, \qquad \overline{\Phi(T^*S)} = G\mathfrak{p}_0^{\perp}.$$

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ideas of the proof

Deformation to the normal bundle

$$\begin{array}{l} \exists \ \text{flat family} \ \widehat{M} \to \mathbb{A}^1 \ \text{with fibers} \\ M_c \simeq M, \ \forall c \neq 0, \\ M_0 \simeq N = N(M/S) \simeq T^*S. \end{array}$$

Poliation of horospheres

Horosphere = orbit of a (fixed) maximal unipotent subgroup $U \subset G$

Suppose *S* is quasiaffine. Denote: $\mathcal{U} \subset T^*S$, conormal bundle to foliation of generic horospheres in *S*; $\mathcal{U} \subset \Phi^{-1}(\mathfrak{u}^{\perp}) = \{(x,\xi) \in T^*S | \langle \mathfrak{u}x, \xi \rangle = 0\}$ $P_0 \subset G$, normalizer of a generic horosphere.

Theorem ([Knop, 1994])

$$\overline{\Phi(\mathcal{U})} = \mathfrak{p}_0^{\perp}, \qquad \overline{G\mathcal{U}} = T^*S, \qquad \overline{\Phi(T^*S)} = G\mathfrak{p}_0^{\perp}.$$

Ideas of the proof

Deformation to the normal bundle

$$\begin{array}{l} \exists \ \text{flat family} \ \widehat{M} \to \mathbb{A}^1 \ \text{with fibers} \\ M_c \simeq M, \ \forall c \neq 0, \\ M_0 \simeq N = N(M/S) \simeq T^*S. \end{array}$$

Poliation of horospheres

Horosphere = orbit of a (fixed) maximal unipotent subgroup $U \subset G$

Suppose *S* is quasiaffine. Denote: $\mathcal{U} \subset T^*S$, conormal bundle to foliation of generic horospheres in *S*; $\mathcal{U} \subset \Phi^{-1}(\mathfrak{u}^{\perp}) = \{(x,\xi) \in T^*S | \langle \mathfrak{u}x, \xi \rangle = 0\}$ $P_0 \subset G$, normalizer of a generic horosphere.

Theorem ([Knop, 1994])

$$\overline{\Phi(\mathcal{U})} = \mathfrak{p}_0^{\perp}, \qquad \overline{G\mathcal{U}} = T^*S, \qquad \overline{\Phi(T^*S)} = G\mathfrak{p}_0^{\perp}.$$

Ideas of the proof.

Hamiltonian structure on the deformation to the normal bundle. Consider the blow up of $S \times \{0\}$ in $M \times \mathbb{A}^1$. The exceptional divisor is isomorphic to the projective bundle $\mathbb{P}(N \oplus \mathbb{k})$ over $S \times \{0\}$, where N is the normal bundle of $S \subset M$. The strict preimage \check{M} of $M \times \{0\}$ is nothing else but the blowup of $M \times \{0\}$ at $S \times \{0\}$. These two divisors intersect in $\mathbb{P}(N)$, the exceptional divisor of $\check{M} \to M$. Removing \check{M} we obtain a smooth variety \widehat{M} together with a smooth morphism $\delta : \widehat{M} \to \mathbb{A}^1$ such that $\delta^{-1}(\mathbb{A}^1 \setminus \{0\}) \simeq M \times (\mathbb{A}^1 \setminus \{0\})$ and $\delta^{-1}(0) \simeq N$.

In more algebraic terms,

 $\varphi: \widehat{M} \to M \times \mathbb{A}^1 \to M$ is an affine morphism.

$$\varphi_*\mathcal{O}_{\widehat{M}} = \bigoplus_{n=-\infty}^{\infty} \mathcal{I}_{S}^{n} t^{-n} \subset \mathcal{O}_{M}[t^{\pm 1}],$$

where t is the coordinate on \mathbb{A}^1 , $\mathcal{I}_S \triangleleft \mathcal{O}_M$ is the ideal sheaf defining S, and $\mathcal{I}_S^{-1} = \mathcal{I}_S^{-2} = \cdots = \mathcal{O}_M$ by definition.

Ideas of the proof

Lemma

Let $S \subset M$ is a coisotropic subvariety and \mathcal{I}_S be the sheaf of ideals defining S. Then $\{\mathcal{I}_S^n, \mathcal{I}_S^m\} \subset \mathcal{I}_S^{n+m-1}$.

Since the subvariety $S \subset M$ is coisotropic (which means that $TS \supset (TS)^{\perp}$ in $TM|_S$), the skew gradients of $f \in \mathcal{I}_S$ are tangent to S, i.e., $\langle d\mathcal{I}_S, \nabla \mathcal{I}_S \rangle = 0$ on S or, equivalently, $\{\mathcal{I}_S, \mathcal{I}_S\} \subset \mathcal{I}_S$.

Now the Poisson bracket on $\varphi_*\mathcal{O}_{\widehat{M}}$ is defined as $\{ft^{-n}, gt^{-m}\} = \{f, g\}t^{-n-m+1}, \forall f \in \mathcal{I}_S^n, g \in \mathcal{I}_S^m$.

If S is Lagrangian subvariety we define the *total moment map* $\widehat{\Phi}: \widehat{M} \to \mathfrak{g}^* \times \mathbb{A}^1$ such that the dual algebra homomorphism $\widehat{\Phi}^*: \Bbbk[\mathfrak{g}^*][t] \to \Bbbk[\widehat{M}]$ is defined by the formulæ: $\widehat{\Phi}^*\xi = \Phi^*\xi \cdot t^{-1}$, $\forall \xi \in \mathfrak{g}$, and $\widehat{\Phi}^*t = t$. Which is well defined since $\Phi^*\xi \subset \mathcal{I}_S$.

Ideas of the proof

$T^*S \rightsquigarrow M, \quad \mathcal{U} \rightsquigarrow \mathcal{W}$

Construction of \mathcal{W} :

- Choose P_0 -invariant functions $F_1, \ldots, F_m : M \supset \mathring{M} \to \mathbb{C}$ such that $dF_1|_S, \ldots, dF_m|_S$ span \mathcal{U} .
- Spread S along the trajectories of $\nabla F_1, \ldots, \nabla F_m$.

Proposition

$$\overline{\Phi(\mathcal{W})} = \mathfrak{p}_0^{\perp}, \qquad \overline{G\mathcal{W}} = M, \qquad \overline{\Phi(M)} = G\mathfrak{p}_0^{\perp}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of the proof

 $T^*S \rightsquigarrow M, \quad \mathcal{U} \rightsquigarrow \mathcal{W}$

Construction of \mathcal{W} :

- Choose P_0 -invariant functions $F_1, \ldots, F_m : M \supset \mathring{M} \to \mathbb{C}$ such that $dF_1|_S, \ldots, dF_m|_S$ span \mathcal{U} .
- Spread S along the trajectories of $\nabla F_1, \ldots, \nabla F_m$.

Proposition

$$\overline{\Phi(\mathcal{W})} = \mathfrak{p}_0^{\perp}, \qquad \overline{G\mathcal{W}} = M, \qquad \overline{\Phi(M)} = G\mathfrak{p}_0^{\perp}.$$

Ideas of the proof

 $T^*S \rightsquigarrow M, \quad \mathcal{U} \rightsquigarrow \mathcal{W}$

Construction of \mathcal{W} :

- Choose P_0 -invariant functions $F_1, \ldots, F_m : M \supset \mathring{M} \to \mathbb{C}$ such that $dF_1|_S, \ldots, dF_m|_S$ span \mathcal{U} .
- Spread S along the trajectories of $\nabla F_1, \ldots, \nabla F_m$.

Proposition

$$\overline{\Phi(\mathcal{W})} = \mathfrak{p}_0^{\perp}, \qquad \overline{G\mathcal{W}} = M, \qquad \overline{\Phi(M)} = G\mathfrak{p}_0^{\perp}.$$

Coisotropic case

Let now $S \subset M$ be coisotropic *G*-stable. Assume:

$$\mathfrak{g} x \subset (T_x S)^{\angle}, \qquad \forall x \in S$$
 (\diamondsuit)

Theorem

 $\overline{\Phi(M)} = \overline{\Phi(T^*S)}$ dim M/G = dim N/G

(N = N(M/S), normal bundle)

Question

Is it possible to waive weaken (\diamondsuit) ?

Coisotropic case

Let now $S \subset M$ be coisotropic *G*-stable. Assume:

$$\mathfrak{g} x \subset (T_x S)^{\angle}, \quad \forall x \in S$$
 (\diamondsuit)

Theorem

If (\diamondsuit) holds, then

 $\overline{\Phi(M)} = \overline{\Phi(T^*S)}$ $\dim M/G = \dim N/G$

(N = N(M/S), normal bundle)

Question

Is it possible to waive weaken (\diamondsuit) ?

Coisotropic case

Let now $S \subset M$ be coisotropic *G*-stable. Assume:

$$\mathfrak{g} x \subset (T_x S)^{\angle}, \quad \forall x \in S$$
 (\diamondsuit)

Theorem

If (\diamondsuit) holds, then

 $\overline{\Phi(M)} = \overline{\Phi(T^*S)}$ $\dim M/G = \dim N/G$

(N = N(M/S), normal bundle)

Question

Is it possible to waive weaken (\diamondsuit) ?

Elashvili's conjecture

Let *H* be an algebraic group, $\mathfrak{h} = \text{Lie } H$.

Definition

Index ind $\mathfrak{h} = \dim(\mathfrak{h}^*/H) = \dim H_p$, $p \in \mathfrak{h}^*$ general point.

Conjecture (Elashvili)

$$\forall x \in \mathfrak{g}^* \simeq \mathfrak{g} : \quad \text{ind } \mathfrak{g}_x = \text{ind } \mathfrak{g}$$

- reduced to nilpotent *x*;
- verified case by case for classical g (Yakimova, 2006)
- and exceptional g (De Graaf, 2008);
- reduced to 7 nilpotent cases (Charbonnel-Moreau, 2010, 28 pages).

・同ト (ヨト (ヨト ヨヨ) の()

Elashvili's conjecture

Let *H* be an algebraic group, $\mathfrak{h} = \text{Lie } H$.

Definition

Index ind $\mathfrak{h} = \dim(\mathfrak{h}^*/H) = \dim H_p$, $p \in \mathfrak{h}^*$ general point.

Conjecture (Elashvili)

$$\forall x \in \mathfrak{g}^* \simeq \mathfrak{g} : \quad \text{ind } \mathfrak{g}_x = \text{ind } \mathfrak{g}$$

- reduced to nilpotent *x*;
- verified case by case for classical g (Yakimova, 2006)
- and exceptional g (De Graaf, 2008);
- reduced to 7 nilpotent cases (Charbonnel-Moreau, 2010, 28 pages).

Elashvili's conjecture

Let *H* be an algebraic group, $\mathfrak{h} = \text{Lie } H$.

Definition

Index ind $\mathfrak{h} = \dim(\mathfrak{h}^*/H) = \dim H_p$, $p \in \mathfrak{h}^*$ general point.

Conjecture (Elashvili)

$$\forall x \in \mathfrak{g}^* \simeq \mathfrak{g}: \quad \operatorname{ind} \mathfrak{g}_x = \operatorname{ind} \mathfrak{g}$$

- reduced to nilpotent x;
- verified case by case for classical g (Yakimova, 2006)
- and exceptional g (De Graaf, 2008);
- reduced to 7 nilpotent cases (Charbonnel-Moreau, 2010, 28 pages).

Natural action $G \times G \curvearrowright G$ (by left/right multiplication) yields Hamiltonian action $G \times G \curvearrowright M = T^*G \simeq G \times \mathfrak{g}^*$.

```
M \supset S = (G \times G) \times \simeq G \times \operatorname{Ad}^*(G) \times \text{ is coisotropic.}N = N(M/S) \simeq G \times N(\mathfrak{g}^*/\operatorname{Ad}^*(G) \times)(G \times G)_{\times} = G_{\times} \curvearrowright N_{\times} \simeq \mathfrak{g}_{\times}^*M/(G \times G) \simeq \mathfrak{g}_{\times}^*/GN/(G \times G) \simeq \mathfrak{g}_{\times}^*/G_{\times}
```

Equality of dim's of LHS's would imply ind $\mathfrak{g} = \operatorname{ind} \mathfrak{g}_{x}$. Note: (\diamondsuit) fails.

Natural action $G \times G \curvearrowright G$ (by left/right multiplication) yields Hamiltonian action $G \times G \curvearrowright M = T^*G \simeq G \times \mathfrak{g}^*$.

$$M \supset S = (G \times G)x \simeq G \times \operatorname{Ad}^*(G)x$$
 is coisotropic
 $N = N(M/S) \simeq G \times N(\mathfrak{g}^*/\operatorname{Ad}^*(G)x)$
 $(G \times G)_x = G_x \curvearrowright N_x \simeq \mathfrak{g}_x^*$

 $M/(G imes G) \simeq \mathfrak{g}^*/G$ $N/(G imes G) \simeq \mathfrak{g}^*_X/G_X$

Equality of dim's of LHS's would imply ind $\mathfrak{g} = \operatorname{ind} \mathfrak{g}_x$. Note: (\diamondsuit) fails.

Natural action $G \times G \curvearrowright G$ (by left/right multiplication) yields Hamiltonian action $G \times G \curvearrowright M = T^*G \simeq G \times \mathfrak{g}^*$.

$$\begin{split} M \supset S &= (G \times G) x \simeq G \times \operatorname{Ad}^*(G) x \text{ is coisotropic.} \\ N &= N(M/S) \simeq G \times N(\mathfrak{g}^*/\operatorname{Ad}^*(G) x) \\ (G \times G)_x &= G_x \curvearrowright N_x \simeq \mathfrak{g}_x^* \\ \\ M/(G \times G) \simeq \mathfrak{g}_x^*/G \\ N/(G \times G) \simeq \mathfrak{g}_x^*/G_x \end{split}$$

Equality of dim's of LHS's would imply ind $\mathfrak{g} = \operatorname{ind} \mathfrak{g}_x$. Note: (\diamondsuit) fails.

Natural action $G \times G \curvearrowright G$ (by left/right multiplication) yields Hamiltonian action $G \times G \curvearrowright M = T^*G \simeq G \times \mathfrak{g}^*$.

$$\begin{split} M \supset S &= (G \times G) x \simeq G \times \operatorname{Ad}^*(G) x \text{ is coisotropic.} \\ N &= N(M/S) \simeq G \times N(\mathfrak{g}^*/\operatorname{Ad}^*(G) x) \\ (G \times G)_x &= G_x \curvearrowright N_x \simeq \mathfrak{g}_x^* \\ M/(G \times G) \simeq \mathfrak{g}_x^*/G \\ N/(G \times G) \simeq \mathfrak{g}_x^*/G_x \end{split}$$

Equality of dim's of LHS's would imply ind $\mathfrak{g} = \operatorname{ind} \mathfrak{g}_x$. Note: (\diamondsuit) fails.

References

F. Knop,

The asymptotic behavior of invariant collective motion, Invent. Math. **116** (1994), 309–328.

D. A. Timashev, V. S. Zhgoon, Hamiltonian actions on symplectic varieties with invariant Lagrangian subvarieties, http://arxiv.org/abs/1109.5239.

V. S. Zhgoon, D. A. Timashev, Symplectic varieties with invariant Lagrangian subvarieties, Doklady Mathematics 85 (2012), no. 2, 243–246.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ