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Main Thesis

We consider symplectic algebraic varieties equipped with a Hamiltonian
reductive group action which contain an invariant Lagrangian subvariety.

Main Thesis

Hamiltonian symplectic varieties with invariant Lagrangian subvarieties
behave similar to cotangent bundles.
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Preliminaries and motivation

Symplectic geometry

Let G be a reductive group, B be a Borel subgroup, X be an algebraic
G -variety.

Definition

The complexity c(X ) is the codimension of general B-orbits in X .

It can also be defined as the minimal codimension of B-orbits in X and, by
the Rosenlicht theorem, coincides with the transcendence degree (over k)
of the field k(X )B of B-invariant rational functions.

Definition

The weight lattice of X is the set Λ(X ) of eigenweights of all (nonzero)
B-semi-invariant rational functions on X .

Definition

The rank of X is r(X ) = rk Λ(X ).
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Preliminaries and motivation

Our work was motivated by the following result of Panyushev (1999).

Theorem

Let X be a smooth G -variety and Y ⊂ X be a smooth G-subvariety.
Denote by N = N(X/Y ) and N∗ = N∗(X/Y ) the normal and conormal
bundle of Y in X , respectively. Then c(X ) = c(N) = c(N∗) and
r(X ) = r(N) = r(N∗).

Note: N∗ is a Lagrangian subvariety T ∗X .

Question (Panyushev 1999): Is this theorem true for any G -invariant
Lagrangian subvariety S in T ∗X ?
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Preliminaries and motivation

Symplectic geometry

(M, ω), symplectic manifold (over K = R,C) or
smooth algebraic variety (over K = C),

ω is a nondegenerate closed 2-form on M;

∇f , skew gradient of f : M ⊃ U → K,
df (v) = ω(∇f , v), ∀v ∈ TM;

{f , g} = ω(∇f ,∇g), Poisson bracket.

A submanifold / smooth algebraic subvariety S ⊆ M is:

isotropic if ω|TpS = 0, ∀p ∈ S ;

coisotropic if ω|(TpS)∠ = 0, ∀p ∈ S ;

Lagrangian = isotropic + coisotropic.
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Preliminaries and motivation

Hamiltonian actions

Lie/algebraic group action G y M is Hamiltonian if:

it preserves ω;

∃ moment map Φ : M → g∗:

Φ is G -equivariant,
∇(Φ∗ξ) = ξ∗, ∀ξ ∈ g,
〈dpΦ(v), ξ〉 = ω(ξp, v), ∀p ∈ M, v ∈ TpM;

Notation: ξ∗(p) = ξp = d
dt |t=0 exp(tξ)p, velocity vector.

{Φ∗ξ,Φ∗η} = Φ∗([ξ, η]), ∀ξ, η ∈ g.
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Preliminaries and motivation

Basic example: cotangent bundles

Example

M = T ∗X , ω =
∑

i dxi ∧ dyi ,
xi are local coordinates on X , yi are dual coordinates in T ∗x X .

G y X induces Hamiltonian action G y T ∗X ,
〈Φ(p), ξ〉 = 〈p, ξx〉, ∀x ∈ X , p ∈ T ∗x X , ξ ∈ g.

Zero section S ⊂ T ∗X is Lagrangian.

Conormal bundles N∗(X/Y ) = {p ∈ T ∗x X | x ∈ Y , 〈p,TxY 〉 = 0} are
Lagrangian for any Y ⊆ X .
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Preliminaries and motivation

Structure of a neighborhood of a Lagrangian submanifold

Assume S ⊂ M Lagrangian.

Darboux–Weinstein Theorem =⇒ M ' T ∗S (C∞ symplectomorphism)
in a neighborhood of S

G compact Lie group, G y M Hamiltonian, S G -stable =⇒
G -equivariant local symplectomorphism M ' T ∗S (B. Kostant)

G reductive algebraic group, M Hamiltonian G -variety,
S ⊂ M G -stable Lagrangian subvariety:
G -equivariant local symplectomorphism may not exist.

Obstruction: the structure of isotropy representations.

Gp y Tp(T ∗S) = TpS ⊕ T ∗p S splits.

May happen that TpS has no Gp-stable complement in TpM.
Skip example

D. A. Timashev, V. S. Zhgoon (Moscow) Symplectic varieties 2012 9 / 22



Preliminaries and motivation

Structure of a neighborhood of a Lagrangian submanifold

Assume S ⊂ M Lagrangian.

Darboux–Weinstein Theorem =⇒ M ' T ∗S (C∞ symplectomorphism)
in a neighborhood of S

G compact Lie group, G y M Hamiltonian, S G -stable =⇒
G -equivariant local symplectomorphism M ' T ∗S (B. Kostant)

G reductive algebraic group, M Hamiltonian G -variety,
S ⊂ M G -stable Lagrangian subvariety:
G -equivariant local symplectomorphism may not exist.

Obstruction: the structure of isotropy representations.

Gp y Tp(T ∗S) = TpS ⊕ T ∗p S splits.

May happen that TpS has no Gp-stable complement in TpM.
Skip example

D. A. Timashev, V. S. Zhgoon (Moscow) Symplectic varieties 2012 9 / 22



Preliminaries and motivation

Structure of a neighborhood of a Lagrangian submanifold

Assume S ⊂ M Lagrangian.

Darboux–Weinstein Theorem =⇒ M ' T ∗S (C∞ symplectomorphism)
in a neighborhood of S

G compact Lie group, G y M Hamiltonian, S G -stable =⇒
G -equivariant local symplectomorphism M ' T ∗S (B. Kostant)

G reductive algebraic group, M Hamiltonian G -variety,
S ⊂ M G -stable Lagrangian subvariety:
G -equivariant local symplectomorphism may not exist.

Obstruction: the structure of isotropy representations.

Gp y Tp(T ∗S) = TpS ⊕ T ∗p S splits.

May happen that TpS has no Gp-stable complement in TpM.
Skip example

D. A. Timashev, V. S. Zhgoon (Moscow) Symplectic varieties 2012 9 / 22



Preliminaries and motivation

Structure of a neighborhood of a Lagrangian submanifold

Assume S ⊂ M Lagrangian.

Darboux–Weinstein Theorem =⇒ M ' T ∗S (C∞ symplectomorphism)
in a neighborhood of S

G compact Lie group, G y M Hamiltonian, S G -stable =⇒
G -equivariant local symplectomorphism M ' T ∗S (B. Kostant)

G reductive algebraic group, M Hamiltonian G -variety,
S ⊂ M G -stable Lagrangian subvariety:
G -equivariant local symplectomorphism may not exist.

Obstruction: the structure of isotropy representations.

Gp y Tp(T ∗S) = TpS ⊕ T ∗p S splits.

May happen that TpS has no Gp-stable complement in TpM.
Skip example

D. A. Timashev, V. S. Zhgoon (Moscow) Symplectic varieties 2012 9 / 22



Preliminaries and motivation

Structure of a neighborhood of a Lagrangian submanifold

Assume S ⊂ M Lagrangian.

Darboux–Weinstein Theorem =⇒ M ' T ∗S (C∞ symplectomorphism)
in a neighborhood of S

G compact Lie group, G y M Hamiltonian, S G -stable =⇒
G -equivariant local symplectomorphism M ' T ∗S (B. Kostant)

G reductive algebraic group, M Hamiltonian G -variety,
S ⊂ M G -stable Lagrangian subvariety:
G -equivariant local symplectomorphism may not exist.

Obstruction: the structure of isotropy representations.

Gp y Tp(T ∗S) = TpS ⊕ T ∗p S splits.

May happen that TpS has no Gp-stable complement in TpM.
Skip example

D. A. Timashev, V. S. Zhgoon (Moscow) Symplectic varieties 2012 9 / 22



Preliminaries and motivation

Example: complete conics

Example

P5 = P(Sym3×3(C)), space of conics in P2

F ⊂ P5, set of double lines
X = BlF (P5), variety of complete conics
G = SL3(C) y X ⊃ Y , the unique closed orbit

Put M = T ∗X , S = N∗(X/Y ).

∃ unique y ∈ Y such that Gy =


∗ ∗ ∗0 ∗ ∗

0 0 ∗


p ∈ Sy general point =⇒ G ◦p =


1 ∗ ∗

0 1 ∗
0 0 1


TpS has no G ◦p -stable complement in TpM.
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Results

Setup

From now on:

M is an irreducible symplectic algebraic variety;
G is a connected reductive algebraic group, g = Lie G ;
G y M is a Hamiltonian action;
Φ : M → g∗ is the moment map.

Notation: gp = TpGp = {ξp | ξ ∈ g}, ∀p ∈ M
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Results

Invariants of a Hamiltonian action

Definition

Corank cork M = rkω|(gp)∠ ;

Defect def M = dim gp ∩ (gp)∠ (p ∈ M general point).

Properties:

1 Ker dpΦ = (gp)∠;

2 Im dpΦ = (gp)⊥;

3 dim Φ(M) = dim Gp (p general) ⇐= (2);

4 def M = dim Φ(M)/G ⇐= (3), (1);

5 cork M = dim M − dim Φ(M)− dim Φ(M)/G ⇐= (6), (3), (4);

6 cork M + def M = dim M/G .
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6 cork M + def M = dim M/G .
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Results

How to formulate an analog of Panyushev’s theorem for Hamiltonian
varieties?
Answer:

Theorem (F.Knop 91)

2c(X ) = cork T ∗X , r(X ) = def T ∗X .

Theorem

Let M be a Hamiltonian G -variety and let S ⊂ M be an irreducible
G -stable Lagrangian subvariety. Then 2c(S) = cork M, r(S) = def M.
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Results

Main result

Let S ⊂ M be an irreducible G -stable Lagrangian subvariety.
Φ(S) = {G -fixed point in g∗} ⇐= (1)
May assume: Φ(S) = {0}

Theorem

Φ(M) = Φ(T ∗S)

Corollary

cork M = cork T ∗S

def M = def T ∗S

dim M/G = dim(T ∗S)/G

Skip proof
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Results

Ideas of the proof

1 Deformation to the normal bundle

∃ flat family M̂ → A1 with fibers
Mc ' M, ∀c 6= 0,
M0 ' N = N(M/S) ' T ∗S .

2 Foliation of horospheres
Horosphere = orbit of a (fixed) maximal unipotent subgroup U ⊂ G

Suppose S is quasiaffine. Denote:
U ⊂ T ∗S , conormal bundle to foliation of generic horospheres in S ;
U ⊂ Φ−1(u⊥) = {(x , ξ) ∈ T ∗S | 〈ux , ξ〉 = 0}
P0 ⊂ G , normalizer of a generic horosphere.

Theorem ([Knop, 1994])

Φ(U) = p⊥0 , GU = T ∗S, Φ(T ∗S) = Gp⊥0 .
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Results

Ideas of the proof.

Hamiltonian structure on the deformation to the normal bundle.
Consider the blow up of S × {0} in M × A1. The exceptional divisor is
isomorphic to the projective bundle P(N ⊕ k) over S ×{0}, where N is the
normal bundle of S ⊂ M. The strict preimage M̌ of M × {0} is nothing
else but the blowup of M × {0} at S × {0}. These two divisors intersect
in P(N), the exceptional divisor of M̌ → M. Removing M̌ we obtain a
smooth variety M̂ together with a smooth morphism δ : M̂ → A1 such
that δ−1(A1 \ {0}) ' M × (A1 \ {0}) and δ−1(0) ' N.

In more algebraic terms,
ϕ : M̂ → M × A1 → M is an affine morphism.

ϕ∗OM̂
=

∞⊕
n=−∞

InS t−n ⊂ OM [t±1],

where t is the coordinate on A1, IS COM is the ideal sheaf defining S ,
and I−1S = I−2S = · · · = OM by definition.
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Results

Ideas of the proof

Lemma

Let S ⊂ M is a coisotropic subvariety and IS be the sheaf of ideals
defining S. Then {InS , ImS } ⊂ I

n+m−1
S .

Since the subvariety S ⊂ M is coisotropic (which means that TS ⊃ (TS)∠

in TM|S), the skew gradients of f ∈ IS are tangent to S , i.e.,
〈dIS ,∇IS〉 = 0 on S or, equivalently, {IS , IS} ⊂ IS .

Now the Poisson bracket on ϕ∗OM̂
is defined as

{ft−n, gt−m} = {f , g}t−n−m+1, ∀f ∈ InS , g ∈ ImS .

If S is Lagrangian subvariety we define the total moment map
Φ̂ : M̂ → g∗ × A1 such that the dual algebra homomorphism
Φ̂∗ : k[g∗][t]→ k[M̂] is defined by the formulæ: Φ̂∗ξ = Φ∗ξ · t−1, ∀ξ ∈ g,
and Φ̂∗t = t. Which is well defined since Φ∗ξ ⊂ IS .
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Results

Ideas of the proof

T ∗S  M, U  W

Construction of W:

Choose P0-invariant functions F1, . . . ,Fm : M ⊃ M̊ → C such that
dF1|S , . . . , dFm|S span U .

Spread S along the trajectories of ∇F1, . . . ,∇Fm.

Proposition

Φ(W) = p⊥0 , GW = M, Φ(M) = Gp⊥0 .
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Generalizations and applications

Coisotropic case

Let now S ⊂ M be coisotropic G -stable.
Assume:

gx ⊂ (TxS)∠, ∀x ∈ S (♦)

Theorem

If (♦) holds, then

Φ(M) = Φ(T ∗S)

dim M/G = dim N/G

(N = N(M/S), normal bundle)

Question

Is it possible to waive weaken (♦)?
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Generalizations and applications

Elashvili’s conjecture

Let H be an algebraic group, h = Lie H.

Definition

Index ind h = dim(h∗/H) = dim Hp, p ∈ h∗ general point.

Conjecture (Elashvili)

∀x ∈ g∗ ' g : ind gx = ind g

reduced to nilpotent x ;

verified case by case for classical g (Yakimova, 2006)

and exceptional g (De Graaf, 2008);

reduced to 7 nilpotent cases (Charbonnel–Moreau, 2010, 28 pages).
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Generalizations and applications

Elashvili’s conjecture: towards elementary proof

Natural action G × G y G (by left/right multiplication) yields
Hamiltonian action G × G y M = T ∗G ' G × g∗.

M ⊃ S = (G × G )x ' G × Ad∗(G )x is coisotropic.

N = N(M/S) ' G × N(g∗/Ad∗(G )x)
(G × G )x = Gx y Nx ' g∗x

M/(G × G ) ' g∗/G
N/(G × G ) ' g∗x/Gx

Equality of dim’s of LHS’s would imply ind g = ind gx .
Note: (♦) fails.
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