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Lie rings

A Lie ring L is a Z-module equipped with a multiplication

[ , ] : L× L −→ L

(x , y) 7−→ [x , y ]

such that, for all x , y , z in L

[x , x ] = 0;

[x , y ] + [y , x ] = 0;

[x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0, (Jacobi identity).
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Free magma

Let X be a finite set of symbols. The free magma on X is the set
M(X ) defined as:

X ⊂ M(X );

if m, n ∈ M(X ), then also the pair (m, n) ∈ M(X ).

We define a binary operation · by m · n = (m, n) for all
m, n ∈ M(X ).
For m ∈ M(X ) we define its degree recursively:

deg(m) = 1 if m ∈ X ;

deg(m) = deg(m′) + deg(m′′) if m = (m′,m′′).

We use a total and multiplicative order < on M(X ).
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Free non-associative rings

Let AZ(X ) the Z-span of M(X ).
We extend the binary operation · on M(X ) bilinearly to AZ(X ),
then AZ(X ) becomes a non-associative ring called the free
non-associative ring over Z on X .

The elements of M(X ) that occur in a f ∈ AZ(X ) are called
monomials of f . The leading monomial of f is denoted by
LM(f ) and its coefficient by LC(f ). The degree of f will be the
degree of LM(f ).
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Free Lie rings

Let I0 be the ideal of AZ(X ) generated by all (m,m),
(m, n) + (n,m) and (m, (n, p)) + (n, (p,m)) + (p, (m, n)), for
m, n, p ∈ M(X ). Let L(X ) = AZ(X )/I0.
Then L(X ) is a Lie ring called the free Lie ring on X .
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Finitely presented Lie rings

Let L a Lie rings given by a finite set X of generators that are
subject to a set of relations R.

The Lie ring defined by this data is the quotient of the free Lie ring
on X by the ideal generated by R.

We say that a Lie ring defined in this way is given by a finite
presentation and the Lie ring is said to be finitely presented.
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Serena Cicalò University of Trento



Finitely presented Lie rings
The algorithm

n-Engel Lie rings

Finitely presented Lie rings

Let L a Lie rings given by a finite set X of generators that are
subject to a set of relations R.

The Lie ring defined by this data is the quotient of the free Lie ring
on X by the ideal generated by R.

We say that a Lie ring defined in this way is given by a finite
presentation and the Lie ring is said to be finitely presented.
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Multiplication table

Let L generated as an abelian group by the basis B = {x1, . . . , xn}.

For all xi , xj ∈ B, there are n3 structure constants ck
ij ∈ Z, such

that

[xi , xj ] =
n∑

k=1

ck
ij xk .

Also, L, as an abelian group, is isomorphic to

Z/n1Z⊕ . . .⊕ Z/nrZ⊕ Zn−r ,

where n1, . . . , nr are invariant factors such that ni divides ni+1.

We call the set of structure constants ck
ij together with the set of

invariant factors n1, . . . , nr , a multiplication table of L.
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Remark

The representation by a multiplication table is a good way of
presenting a Lie ring.

However, sometimes the natural way to define a Lie ring is by a
finite presentation.

The best we can hope is to have an algorithm that constructs a
multiplication table for a finitely presented Lie ring L whenever L
happens to be finite-dimensional, that is finitely generated as an
abelian group.
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Product prescriptions

Let σ = (m1, . . . ,mk) be a sequence of elements of M(X ) and let
δ = (d1, . . . , dk) be a sequence of letters di ∈ {l , r}. We call the
pair α = (σ, δ) a product prescription.

Corresponding to α there is a map Pα : M(X )→ M(X ) defined as:

If k = 0 then Pα(m) = m for all m.

If k > 0 we set β = ((m2, . . . ,mk), (d2, . . . , dk)) and

Pα(m) =

{
Pβ((m1,m)), if d1 = l ;
Pβ((m,m1)), if d1 = r .

An m ∈ M(X ) is said to be a factor of n ∈ M(X ) if there is a
product prescription α such that Pα(m) = n.
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Gröbner bases in AZ(X )

Let G ⊂ AZ(X ) be a finite set and let f ∈ AZ(X ).
Let g1, . . . , gs ∈ G be all elements of G such that LM(gi ) is a
factor of LM(f ).

Suppose that LC(f ) is divisible by d = gcd(c1, . . . , cs), where
ci = LC(gi ). Let ei > 0 be such that e1c1 + . . .+ escs = d .
Let c be such that LC(f ) = cd .
Let αi be a product prescription such that Pαi (LM(gi )) = LM(f ).

We say that f reduces modulo G to f ′ where

f ′ = f − c(e1Pα1(g1) + . . .+ esPαs (gs)).

Let J ⊂ AZ(X ) be an ideal. We call a G ⊂ J a Gröbner basis of J
if every f ∈ J reduces to zero modulo G .
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Serena Cicalò University of Trento



Finitely presented Lie rings
The algorithm

n-Engel Lie rings
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if every f ∈ J reduces to zero modulo G .
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The algorithm FpLieRing

Let L be a Lie ring given by a finite set of generators that satisfy
a set R of relations. We assume that L is finite-dimensional.

Let X be a set of symbols, in bijection with the generators of L.
Let J be the ideal of AZ(X ) generated by

(m,m) for m ∈ M(X ),

(m, n) + (n,m) for m, n ∈ M(X ),

Jac(m, n, p) for m, n, p ∈ M(X ), where

Jac(m, n, p) = (m, (n, p)) + (n, (p,m)) + (p, (m, n)),

the elements of R.

Then L ∼= AZ(X )/J.
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Serena Cicalò University of Trento



Finitely presented Lie rings
The algorithm

n-Engel Lie rings

The algorithm FpLieRing

Let L be a Lie ring given by a finite set of generators that satisfy
a set R of relations. We assume that L is finite-dimensional.

Let X be a set of symbols, in bijection with the generators of L.
Let J be the ideal of AZ(X ) generated by

(m,m) for m ∈ M(X ),

(m, n) + (n,m) for m, n ∈ M(X ),

Jac(m, n, p) for m, n, p ∈ M(X ), where

Jac(m, n, p) = (m, (n, p)) + (n, (p,m)) + (p, (m, n)),

the elements of R.

Then L ∼= AZ(X )/J.
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The algorithm FpLieRing

The idea of the algorithm FpLieRing is to treat the monic and
non-monic elements of G differentely:

the set of monic elements G mon will be self-reduced then it
is a Gröbner basis;

the set of non-monic elements B is closed under
multiplication (that means if b ∈ B and x is a generator then
(x , b) lies in the span of B).
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is a Gröbner basis;

the set of non-monic elements B is closed under
multiplication (that means if b ∈ B and x is a generator then
(x , b) lies in the span of B).
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Example

Let X = {x , y}, with x < y , and R = {h1, h2, h3}, where

h1 = [x , [x , y ]] + [x , y ],

h2 = 3[y , [y , [x , y ]]] + 6[y , [x , y ]] + 2y ,

h3 = [y , [y , [y , [x , y ]]]] + 2[y , [y , [x , y ]]].

Using the algorithm FpLieRing, we can calculate a Gröbner
basis G of the ideal J of AZ(X ), generated by (m,m),
(m, n) + (n,m), Jac(m, n, p), for m, n, p ∈ M(X ), and the
elements of R.
Also we want to determine the set B of normal monomials
modulo G .
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Example

The only relation of degree ≤ 3 is, by h1,

g1 = (x , (x , y)) + (x , y),

then we have

G3 = {g1}, B3 = ∅ and M≤3 = {x , y , (x , y), (y , (x , y))}.
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Example

In degree 4, by h2, we take

g2 = 3(y , (y , (x , y))) + 6(y , (x , y)) + 2y .

Also we have

Jac(x , y , (x , y)) = (x , (y , (x , y)))− (y , (x , (x , y))),

and because we can reduce that modulo g1, we obtain the
new relation

g3 = (x , (y , (x , y))) + (y , (x , y)).

Then

G4 = {g1, g2, g3}, B4 = {g2} and M4 = {(y , (y , (x , y)))}.
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Example

In degree 5, by h3, we put

g4 = (y , (y , (y , (x , y)))) + 2(y , (y , (x , y))).

Also, Jac(x , y , (y , (x , y))) reduce to

g5 = ((x , y), (y , (x , y)))− (x , (y , (y , (x , y))))− (y , (y , (x , y))).

Now we must to consider (x , g2) and (y , g2).
The first implies the new relation

g6 = 3(x , (y , (y , (x , y))))− 6(y , (x , y)) + 2(x , y),

while the second reduce to zero modulo g4. Then

G5 = {g1, . . . , g6}, B5 = {g2, g6} and M5 = {(x , (y , (y , (x , y))))}.
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If we proceed in this way we obtain that

G = {f1, f2, f3, f4, f5, f6, f7} and B = {f1, f2, f4},

where

f1 = 8y ,

f2 = 4(x , y) + 4y ,

f3 = (x , (x , y)) + (x , y),

f4 = 4(y , (x , y)),

f5 = (x , (y , (x , y))) + (y , (x , y)),

f6 = (y , (y , (x , y))) + 2(y , (x , y)) + 6y ,

f7 = ((x , y), (y , (x , y))) + 6(x , y) + 6y .
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Example

The set of normal monomials modulo G is then
B = {e1, e2, e3, e4} with relations

4e1 = 0,

4e2 + 4e3 = 0,

8e3 = 0,

where we put

e1 = (y , (x , y)), e2 = (x , y), e3 = y , e4 = x .

We want to calculate a multiplication table of the Lie ring L.
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Example

The set B forms also a basis of the non-associative ring
A = AZ(X )/J̃, where J̃ is the ideal of AZ(X ) generated by G mon.

We can prove that {e1, e2 + e3, e3, e4} is a basis of A such that

4e1 = 0, 4(e2 + e3) = 0, 8e3 = 0.

There is a homomorphism σ of A onto Z/4Z⊕Z/4Z⊕Z/8Z⊕Z
taking α1e1 +α2(e2 + e3) +α3e3 +α4e4, where α1, . . . , α4 ∈ Z, to

(α1 mod 4, α2 mod 4, α3 mod 8, α4).
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Example

Let now v1, . . . , v4 such that

v1 = σ(e1),

v2 = σ(e2 + e3),

v3 = σ(e3),

v4 = σ(e4).

Then {v1, v2, v3, v4} is a basis of L with 4v1 = 0, 4v2 = 0 and
8v3 = 0.

We can calculate all products [vi , vj ], for all i , j = 1, . . . , 4, i < j ,
by means of

[vi , vj ] = σ(σ−1(vi ) · σ−1(vj)).
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Example

The multiplication table of L is

[v1, v2] = 2v1 + 2v2 + 6v3,

[v1, v3] = 2v1 + 6v3,

[v1, v4] = v1,

[v2, v3] = 3v1,

[v2, v4] = 0,

[v3, v4] = 3v2 + v3,

4v1 = 0,

4v2 = 0,

8v3 = 0.
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Remarks

FpLieRing will terminate whenever the input defines a
finite-dimensional Lie ring. Otherwise it will run forever.

FpLieRing is similar to known algorithms where Gröbner
bases are used to construct finitely presented Lie algebras. In
our we extend these methods to deal with finitely presented
Lie rings. The fact that we work over Z and not over a field
causes a lot of additional problems.

It is also possible that a finitely presented Lie ring is defined
by an infinite set of relations. FpLieRing can deal with this
provided that we can only have a finite number of relations of
a given degree.
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Serena Cicalò University of Trento



Finitely presented Lie rings
The algorithm

n-Engel Lie rings

The algorithm LieNQ

In a paper of 1997, C. Schneider described an algorithm, called
LieNQ, to compute so-called nilpotent quotients of finitely
presented Lie rings.

When the input relations are homogeneous (i.e., each relation has
monomials of the same degree), then it is possible to reformulate
the algorithm FpLieRing in such a way that it becomes very
similar to Schneider’s algorithm. So for this case the two
approaches yield similar algorithms.

However, the approach via Gröbner bases leads to a more general
algorithm, that will work whenever the finitely presented Lie ring is
finite-dimensional.
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Preliminars

We have applied the algorithm FpLieRing to construct the
biggest Lie ring that is

generated by t elements;

satisfies the n-Engel condition

for various t and n.
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The n-Engel condition

A Lie ring L satisfies the n-Engel condition if

[x , [x , [. . . , [x︸ ︷︷ ︸
n

, y ] . . .]]] = 0

for all x , y in L.

We will use the right normed convention for iterated
commutators.
For example, [xxxxy ] will be the element [x [x [x [xy ]]]] of L.
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Lower central series

The lower central series of L is defined as:

L1 = L;

Lr+1 = [L, Lr ], for r ≥ 1;

where [L, Lr ] is the subring of L generated (as an abelian group) by
all [x , y ] for x ∈ L and y ∈ Lr .
L is nilpotent if Ls+1 = 0 for some s, and the smallest such s is
called the nilpotency class.
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E (t, n)

In 1989 Zelmanov shows that: a finitely-generated Lie ring that
satisfies an n-Engel condition is nilpotent.

Let E (t, n) be the biggest Lie ring with t generators which satisfies
the n-Engel condition.

What is the structure of E (t, n)?

Higgins and Traustason have studied the structure of E (t, n) over
fields.
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Results over fields

Let L be an algebra over a field k .
In 1953 Higgins shows that:

2-Engel condition implies L4 = 0;

3-Engel condition implies

L7 = 0 if char k 6= 2, 5.

In 1993 Traustason shows that:

3-Engel condition implies

L5 = 0 if char k 6= 2, 5;

4-Engel condition implies

Lc = 0, c < 9 if char k 6= 2, 3, 5.
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Main problem

We have studied the structure of E (t, n) over Z rather than over a
field. For this, we have applied our algorithm for various t and n.

One problem when dealing with the n-Engel condition is:

The condition [x . . . xy ] = 0 is not multilinear.

In fact, it is only linear in y .

In order to establish whether a Lie ring L is n-Engel it is not
sufficient to check this condition for the elements of a basis.

Let L be generated as an abelian group by B = {x1, . . . , xm}.
We have determined several sets of conditions on the elements of
B only, that are necessary and sufficient for L to satisfy the
n-Engel condition.
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Serena Cicalò University of Trento



Finitely presented Lie rings
The algorithm

n-Engel Lie rings

2-Engel Lie rings

Let L be generated as an abelian group by B = {x1, . . . , xm}.
The 2-Engel condition is [xxy ] = 0 for all x , y ∈ L.
Then [xixiy ] = 0 for all xi ∈ B and y ∈ L.
Let x = xi + pjxj with pj = ±1. We have

0 = [(xi +pjxj)(xi +pjxj)y ] = [xixiy ]+pj([xixjy ]+[xjxiy ])+[xjxjy ]

then

[xixjy ] + [xjxiy ] = 0 ∀xi , xj ∈ B, i < j , y ∈ L.

Let x = pj1xj1 + . . .+ pjs xjs , xjr ∈ B and pjr = ±1. We have

0 = [xxy ] =
∑

r

p2
jr [xjr xjr y ] +

∑
r 6=t

pjr pjt ([xjr xjt y ] + [xjt xjr y ]).
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2-Engel Lie rings

A Lie ring L is 2-Engel if and only if

[xixiy ] = 0;

[xixjy ] + [xjxiy ] = 0;

for all y ∈ L, xi , xj ∈ B and i < j .

We have showed that E (t, 2) has dimension:

dim(E (t, 2)) = t +

(
t

2

)
+

(
t

3

)
and nilpotency class 3, for t > 2.
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3-Engel Lie rings

The 3-Engel condition is [xxxy ] = 0 for all x , y ∈ L. Then
[xixixiy ] = 0 for all xi ∈ B and y ∈ L.
If x = xi + pjxj with pj = ±1

0 = [xixixjy ] + [xixjxiy ] + [xjxixiy ]± ([xixjxjy ] + [xjxixjy ] + [xjxjxiy ]).

[(x
(2)
i xj)

∗y ] = [xixixjy ] + [xixjxiy ] + [xjxixiy ]

[(xix
(2)
j )∗y ] = [xixjxjy ] + [xjxixjy ] + [xjxjxiy ]

[(x
(2)
i xj)

∗y ]± [(xix
(2)
j )∗y ] = 0

∀xi , xj ∈ B, i < j , y ∈ L.
If x = xi + pjxj + pkxk with pj , pk = ±1

[(xixjxk)∗y ] = 0 ∀xi , xj , xk ∈ B, i ≤ j ≤ k, y ∈ L.
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3-Engel Lie rings

A Lie ring L is 3-Engel if and only if

[(x
(3)
i )∗y ] = 0

[(x
(2)
i xj)

∗y ] + [(xix
(2)
j )∗y ] = 0

[(x
(2)
i xj)

∗y ]− [(xix
(2)
j )∗y ] = 0

[(xixjxk)∗y ] = 0

for all y ∈ L, xi , xj , xk ∈ B and i ≤ j ≤ k.

A Lie ring L is 3-Engel if and only if

[(x
(3)
i )∗y ] = 0

[(x
(2)
i xj)

∗y ] + [(xix
(2)
j )∗y ] = 0

[(xixjxk)∗y ] = 0

2[(xix
(2)
j )∗y ] = 0

for all y ∈ L, xi , xj , xk ∈ B and i ≤ j ≤ k.
If in the third relation

[xixjxky ]+[xixkxjy ]+[xjxixky ]+[xjxkxiy ]+[xkxixjy ]+[xkxjxiy ] = 0

we put i ≤ j = k we obtain

[xixjxjy ] + [xixjxjy ] + [xjxixjy ] + [xjxjxiy ] + [xjxixjy ] + [xjxjxiy ] = 0
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A Lie ring L is 3-Engel if and only if

[(x
(3)
i )∗y ] = 0

[(x
(2)
i xj)

∗y ] + [(xix
(2)
j )∗y ] = 0

[(xixjxk)∗y ] = 0

2[(xix
(2)
j )∗y ] = 0

for all y ∈ L, xi , xj , xk ∈ B and i ≤ j ≤ k.
If in the third relation

[xixjxky ]+[xixkxjy ]+[xjxixky ]+[xjxkxiy ]+[xkxixjy ]+[xkxjxiy ] = 0

we put i ≤ j = k we obtain

[xixjxjy ] + [xixjxjy ] + [xjxixjy ] + [xjxjxiy ] + [xjxixjy ] + [xjxjxiy ] = 0
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3-Engel Lie rings

A Lie ring L is 3-Engel if and only if

[(x
(3)
i )∗y ] = 0

[(x
(2)
i xj)

∗y ] + [(xix
(2)
j )∗y ] = 0

[(xixjxk)∗y ] = 0

for all y ∈ L, xi , xj , xk ∈ B and i ≤ j ≤ k.
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4-Engel Lie rings

A Lie ring L is 4-Engel if and only if

[(x
(4)
i )∗y ] = 0;

[(x
(3)
i xj)

∗y ] + [(x
(2)
i x

(2)
j )∗y ] + [(xix

(3)
j )∗y ] = 0;

[(x
(3)
i xj)

∗y ]− [(x
(2)
i x

(2)
j )∗y ] + [(xix

(3)
j )∗y ] = 0;

[(x
(2)
i xjxk)∗y ] + [(xix

(2)
j xk)∗y ] + [(xixjx

(2)
k )∗y ] = 0;

[(x
(2)
i xjxk)∗y ]− [(xix

(2)
j xk)∗y ] + [(xixjx

(2)
k )∗y ] = 0;

[(x
(2)
i xjxk)∗y ] + [(xix

(2)
j xk)∗y ]− [(xixjx

(2)
k )∗y ] = 0;

[(x
(2)
i xjxk)∗y ]− [(xix

(2)
j xk)∗y ]− [(xixjx

(2)
k )∗y ] = 0;

[(xixjxkxr )∗y ] = 0;

for all y ∈ L, xi , xj , xk , xr ∈ B and i ≤ j ≤ k ≤ r .

(3) with i ≤ j = k is 2[(x
(2)
i x

(2)
j )∗y ] + 6[(xix

(3)
j )∗y ] = 0.

(4) with 1 ≤ j = k = r is 6[(xix
(3)
j )∗y ] = 0.

Subtracting we obtain (5).
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(3) with i ≤ j = k is 2[(x
(2)
i x

(2)
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Serena Cicalò University of Trento



Finitely presented Lie rings
The algorithm

n-Engel Lie rings

4-Engel Lie rings

A Lie ring L is 4-Engel if and only if

(1) [(x
(4)
i )∗y ] = 0;

(2) [(x
(3)
i xj)

∗y ] + [(x
(2)
i x

(2)
j )∗y ] + [(xix

(3)
j )∗y ] = 0;

(3) [(x
(2)
i xjxk)∗y ] + [(xix

(2)
j xk)∗y ] + [(xixjx

(2)
k )∗y ] = 0;

(4) [(xixjxkxr )∗y ] = 0;

(5) 2[(x
(2)
i x

(2)
j )∗y ] = 0;

(6) 2[(xix
(2)
j xk)∗y ] = 0;

(7) 2[(xixjx
(2)
k )∗y ] = 0;

for all y ∈ L, xi , xj , xk , xr ∈ B and i ≤ j ≤ k ≤ r .
(4) with i ≤ j = k ≤ r implies (6).

(3) with i ≤ j = k is 2[(x
(2)
i x

(2)
j )∗y ] + 6[(xix

(3)
j )∗y ] = 0.

(4) with 1 ≤ j = k = r is 6[(xix
(3)
j )∗y ] = 0.

Subtracting we obtain (5).
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A Lie ring L is 4-Engel if and only if

(1) [(x
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(2) [(x
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4-Engel Lie rings

A Lie ring L is 4-Engel if and only if

[(x
(4)
i )∗y ] = 0;

[(x
(3)
i xj)

∗y ] + [(x
(2)
i x

(2)
j )∗y ] + [(xix

(3)
j )∗y ] = 0;

[(x
(2)
i xjxk)∗y ] + [(xix

(2)
j xk)∗y ] + [(xixjx

(2)
k )∗y ] = 0;

[(xixjxkxr )∗y ] = 0;

for all y ∈ L, xi , xj , xk , xr ∈ B and i ≤ j ≤ k ≤ r .
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n-Engel Lie rings

A Lie ring L is n-Engel if and only if∑
k1,...,ks≥1

k1+...+ks=n

[(x
(k1)
j1
· · · x (ks)

js
)∗y ] = 0

for all y ∈ L, 1 ≤ s ≤ n, 1 ≤ j1 ≤ . . . ≤ js ≤ m.
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Example

A Lie ring L is 4-Engel if and only if

[(x
(4)
i )∗y ] = 0;

[(x
(3)
i xj)

∗y ] + [(x
(2)
i x

(2)
j )∗y ] + [(xix

(3)
j )∗y ] = 0;

[(x
(2)
i xjxk)∗y ] + [(xix

(2)
j xk)∗y ] + [(xixjx

(2)
k )∗y ] = 0;

[(xixjxkxr )∗y ] = 0;

2[(x
(2)
i x

(2)
j )∗y ] = 0;

6[(xix
(3)
j )∗y ] = 0;

2[(xix
(2)
j xk)∗y ] = 0;

2[(xixjx
(2)
k )∗y ] = 0;

for all y ∈ L, xi , xj , xk , xr ∈ B and i < j < k < r .
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Implementation

We have implemented the algorithms in the computer algebra
systems GAP4 and Magma.

Using this implementation we have obtained the lower central
series of 3-Engel Lie rings with 2, 3 and 4 generators, 4-Engel Lie
rings with 2 generators and 5-Engel Lie rings with 2 generators.
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Implementation

We have implemented the algorithms in the computer algebra
systems GAP4 and Magma.
Using this implementation we have obtained the lower central
series of 3-Engel Lie rings with 2, 3 and 4 generators, 4-Engel Lie
rings with 2 generators and 5-Engel Lie rings with 2 generators.
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Lower central series dimensions

3-Engel 2 gens 3 gens 4 gens
L1 8 60 541
L2 6 57 537
L3 5 54 531
L4 3 46 511
L5 2 36 472
L6 - 18 388
L7 - 9 293
L8 - 3 173
L9 - - 62
L10 - - 18
L11 - - 4

Table: Lower central series dimensions
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Lower central series dimensions

4-Engel 2 gens 5-Engel 2 gens
L1 34 L1 72
L2 32 L2 70
L3 31 L3 69
L4 29 L4 67
L5 26 L5 64
L6 24 L6 58
L7 20 L7 52
L8 16 L8 40
L9 12 L9 32
L10 6 L10 24
L11 3 L11 12
L12 1 L12 6

L13 2

Table: Lower central series dimensions
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Thank you!
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