Lie methods in Engel groups

Michael Vaughan-Lee

Oxford

November 2008

Michael Vaughan-Lee (Oxford)

$$[x, \underbrace{y, y, \ldots, y}_{n}] = 1$$
 for all $x, y \in G$.

$$[x, \underbrace{y, y, \ldots, y}_{n}] = 1$$
 for all $x, y \in G$.

The big question is: Are *n*-Engel groups locally nilpotent?

∃ ▶ ∢

$$[x, \underbrace{y, y, \ldots, y}_{n}] = 1$$
 for all $x, y \in G$.

The big question is: Are *n*-Engel groups locally nilpotent?

Yes, for n = 1, 2, 3, 4.

→ 3 → 4 3

$$[x, \underbrace{y, y, \ldots, y}_{n}] = 1$$
 for all $x, y \in G$.

The big question is: Are *n*-Engel groups locally nilpotent?

Yes, for n = 1, 2, 3, 4.

???? for n > 4.

A B A A B A

n-Engel groups for small *n*

• 1-Engel groups are abelian

- 1-Engel groups are abelian
- 2-Engel groups are nilpotent of class at most 3, and the normal closure of an element in a 2-Engel group is abelian

- 1-Engel groups are abelian
- 2-Engel groups are nilpotent of class at most 3, and the normal closure of an element in a 2-Engel group is abelian
- [x, y, y] = 1, so y commutes with $[x, y] = x^{-1}y^{-1}xy$. Hence y commutes with y^x . So any two conjugates of y commute

- 1-Engel groups are abelian
- 2-Engel groups are nilpotent of class at most 3, and the normal closure of an element in a 2-Engel group is abelian
- [x, y, y] = 1, so y commutes with $[x, y] = x^{-1}y^{-1}xy$. Hence y commutes with y^x . So any two conjugates of y commute
- 3-Engel groups need not be nilpotent, but the normal closure of an element is nilpotent of class at most 2

- 1-Engel groups are abelian
- 2-Engel groups are nilpotent of class at most 3, and the normal closure of an element in a 2-Engel group is abelian
- [x, y, y] = 1, so y commutes with $[x, y] = x^{-1}y^{-1}xy$. Hence y commutes with y^x . So any two conjugates of y commute
- 3-Engel groups need not be nilpotent, but the normal closure of an element is nilpotent of class at most 2
- In 4-Engel groups the normal closure of an element is nilpotent of class at most 4

- 1-Engel groups are abelian
- 2-Engel groups are nilpotent of class at most 3, and the normal closure of an element in a 2-Engel group is abelian
- [x, y, y] = 1, so y commutes with $[x, y] = x^{-1}y^{-1}xy$. Hence y commutes with y^x . So any two conjugates of y commute
- 3-Engel groups need not be nilpotent, but the normal closure of an element is nilpotent of class at most 2
- In 4-Engel groups the normal closure of an element is nilpotent of class at most 4
- But in 5-Engel groups the normal closure of an element need not be nilpotent

Let *B* be the free group on $b_1, b_2, ...$ in the variety of groups which are nilpotent of class 2 and have exponent 3. So *B'* is an elementary abelian 3-group, with basis $\{[b_i, b_i] | i < j\}$.

Let A be the cyclic group of order 3, generated by a, and let G = A wr B.

Let *B* be the free group on $b_1, b_2, ...$ in the variety of groups which are nilpotent of class 2 and have exponent 3. So *B'* is an elementary abelian 3-group, with basis $\{[b_i, b_i] | i < j\}$.

Let A be the cyclic group of order 3, generated by a, and let G = A wr B.

Let N be the normal closure of A in G.

Then N is an elementary abelian 3-group with basis $\{a^b \mid b \in B\}$, and

$$[a, [b_1, b_2], [b_1, b_3], \dots, [b_1, b_k]] \neq 1$$

for any k. So the normal closure of b_1 in G is not nilpotent.

Let $w, x, y, z \in G$. Then [w, x, y] and $z^3 \in N$, and so

$$1 = [[w, x, y], z^{3}]$$

= $[w, x, y, z]^{3}[w, x, y, z, z]^{3}[w, x, y, z, z, z]$
= $[w, x, y, z, z, z]$

· · · · · · ·

If G is a group we define the associated Lie ring of G as follows. We form the lower central series

$$G = \gamma_1(G) \ge \gamma_2(G) \ge \gamma_3(G) \ge \dots,$$

where $\gamma_{i+1}(G)$ is the subgroup of G generated by $\{[g, h] | g \in \gamma_i(G), h \in G\}.$

If G is a group we define the associated Lie ring of G as follows. We form the lower central series

$$G = \gamma_1(G) \ge \gamma_2(G) \ge \gamma_3(G) \ge \dots,$$

where $\gamma_{i+1}(G)$ is the subgroup of G generated by $\{[g, h] | g \in \gamma_i(G), h \in G\}.$

For i = 1, 2, ... we let $L_i = \gamma_i(G) / \gamma_{i+1}(G)$. Then L_i is an abelian group, and we think of it as a \mathbb{Z} -module and write

$$\textit{L} = \textit{L}_1 \oplus \textit{L}_2 \oplus \textit{L}_3 \oplus \ldots,$$

a direct sum of \mathbb{Z} -modules.

If
$$a = g\gamma_{i+1}(G) \in L_i$$
 and $b = h\gamma_{j+1}(G) \in L_j$ then we set $[a, b] = [g, h]\gamma_{i+j+1}(G) \in L_{i+j}$

We extend this Lie product to the whole of L by linearity

Problem

Is the associated Lie ring of an n-Engel group necessarily an n-Engel Lie ring?

3 🕨 🖌 3

If *L* is the associated Lie ring of an *n*-Engel group then • If $a \in L_i$ and $b \in L_j$, then $[a, \underbrace{b, b, \dots, b}_n] = 0$ • If $a, b_1, b_2, \dots, b_n \in L$ then $\sum_{\sigma \in \text{Sym}(n)} [a, b_{1\sigma}, b_{2\sigma}, \dots, b_{n\sigma}] = 0$ So Zel'manov's Theorem implies that if G is an n-Engel group, and if L is the associated Lie ring of G, then L and $G / \bigcap_{i \ge 1} \gamma_i(G)$ are locally nilpotent.

The first relation above follows directly from the definition of L

To see the second relation, we substitute $y_1y_2...y_n$ for y in the group relation $[x, \underbrace{y, y, ..., y}_n] = 1$. Expanding, we have $\prod_{\sigma \in \mathsf{Sym}(n)} [x, y_{1\sigma}, y_{2\sigma}, ..., y_{n\sigma}] \in \gamma_{n+2}(G)$

The second relation follows immediately

Substitute x_1x_2 for x in the group relation, and we have

$$1 = [x_1 x_2, y, y, \dots, y]$$

= $[[x_1, y][x_1, y, x_2][x_2, y], y, \dots, y]$
= $[x_1, y, y, \dots, y][x_1, y, x_2, y, \dots, y][x_2, y, y, \dots, y]$

modulo $\gamma_{n+3}(G)$

So

$$[x_1, y, x_2, y, \ldots, y] \in \gamma_{n+3}(G)$$

This implies that L satisfies

$$\sum_{\sigma \in \mathsf{Sym}(n)} [a, b_{1\sigma}, c, b_{2\sigma}, \dots, b_{n\sigma}] = 0$$

4 3 > 4 3

If we substitute $x_1x_2...x_r$ for x in the group relation, and substitute $y_1y_2...y_s$ for y (with $s \ge n$), then we obtain a multilinear Lie relation of weight r + s.

So when we move to Lie rings the *n*-Engel group identity gives Lie relations which are both stronger and weaker than the *n*-Engel Lie identity.

We use Lie methods to study finitely generated nilpotent *n*-Engel groups.

Since finitely generated nilpotent groups are residually finite p-groups, we study them by studying finite n-Engel p-groups.

If G is a finite p-group with associated Lie ring L, then L has the same order, class, and number of generators as G. Furthermore L/pL has the same class of L and can be thought of as a Lie algebra over \mathbb{Z}_p .

In characteristic zero the Lie identity

$$\sum_{\sigma\in {
m Sym}(n)} [$$
a, $b_{1\sigma}$, $b_{2\sigma}$, \ldots , $b_{n\sigma}]=0$

implies *global nilpotence*. (Zel'manov again!)

So, for some c, in the free Lie algebra F over the rationals \mathbb{Q} , with free generators $x_1, x_2, \ldots, x_{c+1}$ we have

$$[x_1, x_2, \dots, x_{c+1}] = \sum_{i=1}^k \alpha_i \left(\sum_{\sigma \in \mathsf{Sym}(n)} [a_i, b_{i1\sigma}, b_{i2\sigma}, \dots, b_{in\sigma}] \right)$$

for some rationals α_i , and some elements a_i , $b_{ij} \in F$

If p does not divide the denominators of any of the α_i , this implies that a finite *n*-Engel p-group is nilpotent of class at most c.

So, if $n \ge 2$ there are integers P and c depending on n, such that if G is a finite n-Engel p-group for any p > P, then G is nilpotent of class at most c.

For small n the numbers P and c are surprisingly small.

n	Р	с
2	1	3
3	5	4
4	5	7
5	7?	10?

If G is a finite m-generator group of exponent 5 with associated Lie ring L then

- *L* is *m*-generator
- |G| = |L|
- G and L have the same nilpotency class
- L satisfies the identical relations

$$5x = 0$$

 $\sum_{\sigma \in \operatorname{Sym}(4)} [x, y_{1\sigma}, y_{2\sigma}, y_{3\sigma}, y_{4\sigma}] = 0$

To solve RBP for exponent 5 it is sufficient to show that Lie algebras over \mathbb{Z}_5 satisfying

$$\sum_{\sigma\in\mathsf{Sym}(4)}[x,y_{1\sigma},y_{2\sigma},y_{3\sigma},y_{4\sigma}]=0$$

are locally nilpotent. N.B. In characteristic 5 this identity is equivalent to the 4-Engel identity.

To solve RBP for exponent 5 it is sufficient to show that Lie algebras over \mathbb{Z}_5 satisfying

$$\sum_{\sigma \in \mathsf{Sym}(4)} [x, y_{1\sigma}, y_{2\sigma}, y_{3\sigma}, y_{4\sigma}] = 0$$

are locally nilpotent. N.B. In characteristic 5 this identity is equivalent to the 4-Engel identity.

Higman proved that if L is a 4-Engel Lie algebra over \mathbb{Z}_5 , and if $x \in L$, then $Id_L(x)$ is nilpotent of bounded class

To solve RBP for exponent 5 it is sufficient to show that Lie algebras over \mathbb{Z}_5 satisfying

$$\sum_{\sigma \in \mathsf{Sym}(4)} [x, y_{1\sigma}, y_{2\sigma}, y_{3\sigma}, y_{4\sigma}] = 0$$

are locally nilpotent. N.B. In characteristic 5 this identity is equivalent to the 4-Engel identity.

Higman proved that if L is a 4-Engel Lie algebra over \mathbb{Z}_5 , and if $x \in L$, then $Id_L(x)$ is nilpotent of bounded class

In fact the bound is 6

Let *F* be the free 4-Engel Lie algebra over \mathbb{Z}_5 with free generators *x*, *a*₁, *a*₂, *a*₃,

Let I be the ideal of F generated by $\{[a_i, a_j] \mid i, j \ge 1\}$.

Higman proved that $Id_F(x)$ is nilpotent if and only if F/I is nilpotent, and he proved that F/I is nilpotent.

Let *F* be the free 4-Engel Lie algebra over \mathbb{Z}_5 with free generators *x*, *a*₁, *a*₂, *a*₃,

Let I be the ideal of F generated by $\{[a_i, a_j] \mid i, j \ge 1\}$.

Higman proved that $Id_F(x)$ is nilpotent if and only if F/I is nilpotent, and he proved that F/I is nilpotent.

In fact F/I has class 12. Furthermore, $Id_{F/I}(x+I)$ is nilpotent of class 6. This implies that $Id_F(x)$ is nilpotent of class 6. Let *F* be the free 4-Engel Lie algebra over \mathbb{Z}_5 with free generators *x*, *a*₁, *a*₂, *a*₃,

Let I be the ideal of F generated by $\{[a_i, a_j] \mid i, j \ge 1\}$.

Higman proved that $Id_F(x)$ is nilpotent if and only if F/I is nilpotent, and he proved that F/I is nilpotent.

In fact F/I has class 12. Furthermore, $Id_{F/I}(x+I)$ is nilpotent of class 6. This implies that $Id_F(x)$ is nilpotent of class 6.

This, in turn, implies that if G is a finite *m*-generator group of exponent 5, then G is nilpotent of class at most 6m.

イロト 不得下 イヨト イヨト 二日

Applying Higman's reduction to finite *n*-Engel *p*-groups, we see that the nilpotency class of the normal closure of an element has the following bounds.

	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 5	<i>p</i> = 7	<i>p</i> > 7
<i>n</i> = 2	1	1	1	1	1
<i>n</i> = 3	2	2	2	2	2
<i>n</i> = 4	4	3	4	3	3
<i>n</i> = 5	?	8	6	5	4?