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R. Dedekind: Über Gruppen, deren sämmtliche Theiler Normaltheiler
sind, Mathematische Annalen 48 (1897), 548-561.

R. Baer: Situation der Untergruppen und Struktur der Gruppe, S. B.
Heidelberg. Akad. Wiss. 2 (1933), 12-17.

A Dedekind group is a group in which all subgroups are normal.

A non–abelian Dedekind group is called Hamiltonian.

Theorem

A group G is Hamiltonian if and only if

G = Q8 × E × D,

where Q8 is a quaternion group of order 8, E an elementary abelian
2–group, and D an abelian group with all its elements of odd order.
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Proposition

Let (L, [p]) be a non–abelian restricted Lie algebra over a field F of
characteristic p > 0 such that every restricted subalgebra of L is an ideal.
Then one has:

1 L′ ⊆ L[p] ⊆ Z (L);

2 N (L) ⊆ Z (L);

3 every element of L is p-algebraic.
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Theorem (S., Proc. Amer. Math. Soc., to appear)

Let (L, [p]) be a restricted Lie algebra over a perfect field F of
characteristic p > 0. Then every restricted subalgebra of L is an ideal if
and only if one of the following conditions is satisfied:

(i) L is abelian;

(ii) p = 2, L is nilpotent of class 2 and L = T ⊕ H, where T is a torus
and H a 2-nil restricted Lie algebra such that H ′

2 is cyclic,
H ′

2 = H [2], and N (H) ⊆ Z (H).
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Sketch of the proof.

Sufficiency.

Assume that condition (ii) of the statement holds and let J be a
restricted subalgebra of L.
Let x ∈ J and write

x = xs + xn

with xs ∈ T and xn ∈ H. Then xn ∈ 〈x〉2 ⊆ J.
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Now, let h be any non–central element of H and suppose, if possible,
that h[2] ∈ H [2]2 . We have h[2] = z [2] for some z ∈ Z (H), so that

h + z ∈ N (H) ⊆ Z (H),

a contradiction.
It follows that H ′

2 = 〈h[2]〉2, thus

[x , L] = [xn,H] ⊆ 〈x [2]
n 〉2 ⊆ J.
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Necessity.

The odd characteristic case.

For every a ∈ L consider the Jordan–Chevalley decomposition

a = as + an.

Let x be a p-nilpotent element of L of exponent n, say.
Suppose that there is a p-nilpotent element y of L such that [x , y ] 6= 0.
We can assume that y has exponent m ≥ n.
Since [x , y ] ∈ 〈x〉p, we have

[x , y ] =
n−1∑
i=0

kix
[p]i

for suitable ki ∈ F . Let r = min{i | ki 6= 0}.
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Then we have

[x , y ] =

(
n−1∑
i=r

αix
[p]i−r

)[p]r

for suitable αi ∈ F . Furthermore

[x , y ] =

 m−1∑
j=m−n+r

βjy
[p]j−r

[p]r

for suitable βm−n+r , . . . , βm−1 ∈ F .
The element

g :=
n−r−1∑

j=0

(
αj+rx

[p]j − βj+m−n+ry
[p]j+m−n

)
satisfies g [p]r = 0.
Thus

0 = [g , y ] = αr [x , y ],

a contradiction.
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Now assume p = 2 and L not abelian.

Put
H := {x ∈ L| x 2-nilpotent}

and
T := {x ∈ L| x semisimple}.
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Then:

T and H are ideals of L;

L = T ⊕ H;

N (H) ⊆ Z (H);

elements of H having different exponents commute;

for every non–commuting elements x and y of H one has
〈[x , y ]〉2 = 〈x [2]〉2 = 〈y [2]〉2;
H ′

2 = 〈x̄ [2]〉2 for any non–central element x̄ of H;

H ′
2 = H [2].
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A field F of characteristic p > 0 is said to be p-closed if F has no
extension of degree p.

Theorem

Let F be a perfect field of characteristic 2. Then the following conditions
are equivalent:

1 there exists a non–abelian restricted Lie algebra over F with the
property that all its restricted subalgebras are ideals;

2 F is not 2-closed.

Corollary

Let (L, [p]) be a restricted Lie algebra over an algebraically closed field of
characteristic p > 0.Then every restricted subalgebra of L is an ideal if
and only if L is abelian.
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Example

Let F be a field of characteristic p > 2 containing an element α with no
p-th root in F .

Consider the restricted Lie algebra L over F with a basis {x , y , z} such
that [x , y ] = z , [x , z ] = [y , z ] = 0, x [p] = z , y [p] = αz , and z [p] = 0.

Then every restricted subalgebra of L is an ideal.
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