Induced modules for modular Lie algebras embedding into wreath products

Cristina Di Pietro Norberto Gavioli

Dipartimento di Matematica Pura ed Applicata Università dell'Aqulla

Trento, Nov. 28th 2008

Outline

Outline

Group actions and representations

- Imprimitive *G*-sets
- Sylow *p*-subgroups of $Sym(p^h)$
- Induced modules

Imprimitive actions Blocks

• G finite group, X finite transitive G-set,

 Let B ⊂ X be an imprimitivity block, S = {g ∈ G | Bg = B} the stabilizer of B and T a set of right cosets representatives of S in G.

- if $t, t' \in T$ with $t \neq t'$ then $B \cap Bt = \emptyset$
- $X = \dot{\bigcup}_{t \in T} Bt$
- $X \cong B \times T$ as sets
- T ≃ G/S as G-set where the action of g ∈ G over t ∈ T is denoted by t_g. The kernel of this action is the intersection N = ∩_{g∈G}S^g of the conjugate subgroups of S (core of S).

Imprimitive actions Blocks

- G finite group, X finite transitive G-set,
- Let B ⊂ X be an imprimitivity block, S = {g ∈ G | Bg = B} the stabilizer of B and T a set of right cosets representatives of S in G.

- if $t, t' \in T$ with $t \neq t'$ then $B \cap Bt = \emptyset$
- $X = \dot{\bigcup}_{t \in T} Bt$
- $X \cong B \times T$ as sets
- T ≃ G/S as G-set where the action of g ∈ G over t ∈ T is denoted by t_g. The kernel of this action is the intersection N = ∩_{g∈G}S^g of the conjugate subgroups of S (core of S).

Imprimitive actions Blocks

- G finite group, X finite transitive G-set,
- Let B ⊂ X be an imprimitivity block, S = {g ∈ G | Bg = B} the stabilizer of B and T a set of right cosets representatives of S in G.

- if $t, t' \in T$ with $t \neq t'$ then $B \cap Bt = \emptyset$
- $X = \dot{\bigcup}_{t \in T} Bt$
- $X \cong B \times T$ as sets
- T ≃ G/S as G-set where the action of g ∈ G over t ∈ T is denoted by t_g. The kernel of this action is the intersection N = ∩_{g∈G}S^g of the conjugate subgroups of S (core of S).

Imprimitive actions Blocks

- G finite group, X finite transitive G-set,
- Let B ⊂ X be an imprimitivity block, S = {g ∈ G | Bg = B} the stabilizer of B and T a set of right cosets representatives of S in G.

- if $t, t' \in T$ with $t \neq t'$ then $B \cap Bt = \emptyset$
- $X = \dot{\bigcup}_{t \in T} Bt$
- $X \cong B \times T$ as sets
- T ≃ G/S as G-set where the action of g ∈ G over t ∈ T is denoted by t_g. The kernel of this action is the intersection N = ∩_{g∈G}S^g of the conjugate subgroups of S (core of S).

Imprimitive actions Blocks

- G finite group, X finite transitive G-set,
- Let B ⊂ X be an imprimitivity block, S = {g ∈ G | Bg = B} the stabilizer of B and T a set of right cosets representatives of S in G.

- if $t, t' \in T$ with $t \neq t'$ then $B \cap Bt = \emptyset$
- $X = \dot{\bigcup}_{t \in T} Bt$
- $X \cong B \times T$ as sets
- T ≃ G/S as G-set where the action of g ∈ G over t ∈ T is denoted by t_g. The kernel of this action is the intersection N = ∩_{g∈G}S^g of the conjugate subgroups of S (core of S).

Imprimitive actions Blocks

- G finite group, X finite transitive G-set,
- Let B ⊂ X be an imprimitivity block, S = {g ∈ G | Bg = B} the stabilizer of B and T a set of right cosets representatives of S in G.

- if $t, t' \in T$ with $t \neq t'$ then $B \cap Bt = \emptyset$
- $X = \dot{\bigcup}_{t \in T} Bt$
- $X \cong B \times T$ as sets
- T ≅ G/S as G-set where the action of g ∈ G over t ∈ T is denoted by t_g. The kernel of this action is the intersection N = ∩_{g∈G}S^g of the conjugate subgroups of S (core of S).

Imprimitive actions Blocks

- G finite group, X finite transitive G-set,
- Let B ⊂ X be an imprimitivity block, S = {g ∈ G | Bg = B} the stabilizer of B and T a set of right cosets representatives of S in G.

- if $t, t' \in T$ with $t \neq t'$ then $B \cap Bt = \emptyset$
- $X = \dot{\bigcup}_{t \in T} Bt$
- $X \cong B \times T$ as sets
- T ≃ G/S as G-set where the action of g ∈ G over t ∈ T is denoted by t_g. The kernel of this action is the intersection N = ∩_{g∈G}S^g of the conjugate subgroups of S (core of S).

Imprimitive actions

• Let $b \in B$, $t \in T$ and $g \in G$ the action of g on $x = bt \in X$ is given by

$$xg = (bt)g = (bs_g)t_g$$
 where $s_g = tgt_g^{-1} \in S$

• There is a class of groups acting transitively on $X \cong B \times T$ having the same imprimitivity block system

Imprimitive actions

• Let $b \in B$, $t \in T$ and $g \in G$ the action of g on $x = bt \in X$ is given by

$$xg = (bt)g = (bs_g)t_g$$
 where $s_g = tgt_g^{-1} \in S$

• There is a class of groups acting transitively on $X \cong B \times T$ having the same imprimitivity block system

Imprimitive actions Wreath products

- Let $L \leq \text{Sym}(T)$ and $M \leq \text{Sym}(B)$ be transitive permutation groups
- The set of functions $M^T = \{f \mid f: T \to M\}$ is a group under pointwise multiplication and L acts on it via the coinduced action $f^l(t) = f(tl^{-1})$
- The wreath product $M \wr_T L = L \ltimes M^T$ acts on $X \cong B \times T$ via

 $(b,t) \cdot (l,f) = (bf(tl),tl) = (bf^{l^{-1}}(t),tl)$

and the fibers $B \times \{t\}$ form an imprimitivity block system for this action

Imprimitive actions Wreath products

- Let $L \leq \text{Sym}(T)$ and $M \leq \text{Sym}(B)$ be transitive permutation groups
- The set of functions $M^T = \{f \mid f : T \to M\}$ is a group under pointwise multiplication and L acts on it via the coinduced action $f^l(t) = f(tl^{-1})$
- The wreath product $M \wr_T L = L \ltimes M^T$ acts on $X \cong B \times T$ via

 $(b,t) \cdot (l,f) = (bf(tl),tl) = (bf^{l^{-1}}(t),tl)$

and the fibers $B \times \{t\}$ form an imprimitivity block system for this action

Imprimitive actions Wreath products

- Let $L \leq \text{Sym}(T)$ and $M \leq \text{Sym}(B)$ be transitive permutation groups
- The set of functions $M^T = \{f \mid f : T \to M\}$ is a group under pointwise multiplication and L acts on it via the coinduced action $f^l(t) = f(tl^{-1})$
- The wreath product $M \wr_T L = L \ltimes M^T$ acts on $X \cong B \times T$ via

$$(b,t) \cdot (l,f) = (bf(tl),tl) = (bf^{l^{-1}}(t),tl)$$

and the fibers $B\times\{t\}$ form an imprimitivity block system for this action

Imprimitive actions Wreath products

- Let $L \leq \text{Sym}(T)$ and $M \leq \text{Sym}(B)$ be transitive permutation groups
- The set of functions $M^T = \{f \mid f : T \to M\}$ is a group under pointwise multiplication and L acts on it via the coinduced action $f^l(t) = f(tl^{-1})$
- The wreath product $M \wr_T L = L \ltimes M^T$ acts on $X \cong B \times T$ via

$$(b,t) \cdot (l,f) = (bf(tl),tl) = (bf^{l^{-1}}(t),tl)$$

and the fibers $B\times\{t\}$ form an imprimitivity block system for this action

Imprimitive actions Kaloujnin Krasner embedding

For g ∈ G let f_g ∈ S^T be defined by f_g(t) = t_{g⁻¹}gt⁻¹.
Let kk(g) := (Ng, f_g) ∈ S ≥ (G/N), one has

- The map kk: G → S ≥ (G/N) is an embedding of permutation groups preserving the imprimitivity block system. This map is also known as Kaloujnin Krasner embedding (1951)
- When S is a normal subgroup one has that N = S so that this map embeds G in S ≥ (G/S).

Imprimitive actions Kaloujnin Krasner embedding

For g ∈ G let f_g ∈ S^T be defined by f_g(t) = t_{g⁻¹}gt⁻¹.
Let kk(g) := (Ng, f_g) ∈ S ≀ (G/N), one has

$$(b,t) \cdot kk(g) = (b,t) \cdot (Ng, f_g) = (bf_g(t_g), t_g)$$

- The map kk: G → S ≥ (G/N) is an embedding of permutation groups preserving the imprimitivity block system. This map is also known as *Kaloujnin Krasner embedding* (1951)
- When S is a normal subgroup one has that N = S so that this map embeds G in S ≥ (G/S).

Imprimitive actions Kaloujnin Krasner embedding

For g ∈ G let f_g ∈ S^T be defined by f_g(t) = t_{g⁻¹}gt⁻¹.
Let kk(g) := (Ng, f_g) ∈ S ≀ (G/N), one has

$$\begin{aligned} (b,t) \cdot kk(g) &= (b,t) \cdot (Ng,f_g) &= (bf_g(t_g),t_g) \\ &= (btgt_g^{-1},t_g) \end{aligned}$$

- The map kk: G → S ≥ (G/N) is an embedding of permutation groups preserving the imprimitivity block system. This map is also known as *Kaloujnin Krasner embedding* (1951)
- When S is a normal subgroup one has that N = S so that this map embeds G in S ≥ (G/S).

Imprimitive actions Kaloujnin Krasner embedding

For g ∈ G let f_g ∈ S^T be defined by f_g(t) = t_{g⁻¹}gt⁻¹.
Let kk(g) := (Ng, f_g) ∈ S ≀ (G/N), one has

$$\begin{aligned} (b,t) \cdot kk(g) &= (b,t) \cdot (Ng,f_g) &= (bf_g(t_g),t_g) \\ &= (btgt_g^{-1},t_g) \\ &= (bs_g,t_g) \end{aligned}$$

- The map kk: G → S ≥ (G/N) is an embedding of permutation groups preserving the imprimitivity block system. This map is also known as Kaloujnin Krasner embedding (1951)
- When S is a normal subgroup one has that N = S so that this map embeds G in S ≥ (G/S).

Imprimitive actions Kaloujnin Krasner embedding

• For $g \in G$ let $f_g \in S^T$ be defined by $f_g(t) = t_{g^{-1}}gt^{-1}$. • Let $kk(g) := (Ng, f_g) \in S \wr (G/N)$, one has

$$\begin{aligned} (b,t) \cdot kk(g) &= (b,t) \cdot (Ng,f_g) &= (bf_g(t_g),t_g) \\ &= (btgt_g^{-1},t_g) \\ &= (bs_g,t_g) \\ &= (b,t)g \end{aligned}$$

- The map kk: G → S ≥ (G/N) is an embedding of permutation groups preserving the imprimitivity block system. This map is also known as Kaloujnin Krasner embedding (1951)
- When S is a normal subgroup one has that N = S so that this map embeds G in S ≥ (G/S).

Imprimitive actions Kaloujnin Krasner embedding

• For $g \in G$ let $f_g \in S^T$ be defined by $f_g(t) = t_{g^{-1}}gt^{-1}$. • Let $kk(g) := (Ng, f_g) \in S \wr (G/N)$, one has

$$\begin{aligned} (b,t) \cdot kk(g) &= (b,t) \cdot (Ng,f_g) &= (bf_g(t_g),t_g) \\ &= (btgt_g^{-1},t_g) \\ &= (bs_g,t_g) \\ &= (b,t)g \end{aligned}$$

- The map kk: G → S ≥ (G/N) is an embedding of permutation groups preserving the imprimitivity block system. This map is also known as Kaloujnin Krasner embedding (1951)
- When S is a normal subgroup one has that N = S so that this map embeds G in S ≥ (G/S).

Imprimitive actions Kaloujnin Krasner embedding

• For $g \in G$ let $f_g \in S^T$ be defined by $f_g(t) = t_{g^{-1}}gt^{-1}$. • Let $kk(g) := (Ng, f_g) \in S \wr (G/N)$, one has

$$\begin{aligned} (b,t) \cdot kk(g) &= (b,t) \cdot (Ng,f_g) &= (bf_g(t_g),t_g) \\ &= (btgt_g^{-1},t_g) \\ &= (bs_g,t_g) \\ &= (b,t)g \end{aligned}$$

- The map kk: G → S ≥ (G/N) is an embedding of permutation groups preserving the imprimitivity block system. This map is also known as *Kaloujnin Krasner embedding* (1951)
- When *S* is a normal subgroup one has that *N* = *S* so that this map embeds *G* in *S* ≀ (*G*/*S*).

Outline

Group actions and representations

- Imprimitive *G*-sets
- Sylow *p*-subgroups of $Sym(p^h)$
- Induced modules

Iterated kk-embedding

 If G is a p-group and |X| = p^h then it is well known that there is a chain of imprimitivity blocks

$$\{x\} \subset B_1 \subset \cdots \subset B_{h-2} \subset X$$

such that $|B_i| = p^i$

 Iterating the kk embedding procedure along this chains one gets an embedding of G as a permutation subgroup of W_h := C_p ≀ · · · ≀ C_p

h times

• It follows that W_h is a Sylow *p*-subgroup of $Sym(p^h)$

Iterated *kk*-embedding

 If G is a p-group and |X| = p^h then it is well known that there is a chain of imprimitivity blocks

$$\{x\} \subset B_1 \subset \cdots \subset B_{h-2} \subset X$$

such that $|B_i| = p^i$

• Iterating the kk embedding procedure along this chains one gets an embedding of G as a permutation subgroup of $W_h := \underbrace{C_p \wr \cdots \wr C_p}_{p}$

h times

• It follows that W_h is a Sylow *p*-subgroup of $Sym(p^h)$

Iterated *kk*-embedding

 If G is a p-group and |X| = p^h then it is well known that there is a chain of imprimitivity blocks

$$\{x\} \subset B_1 \subset \cdots \subset B_{h-2} \subset X$$

such that $|B_i| = p^i$

• Iterating the kk embedding procedure along this chains one gets an embedding of G as a permutation subgroup of $W_h := \underbrace{C_p \wr \cdots \wr C_p}_{kk}$

h times

• It follows that W_h is a Sylow *p*-subgroup of $Sym(p^h)$

Outline

Group actions and representations

- Imprimitive *G*-sets
- Sylow *p*-subgroups of $Sym(p^h)$
- Induced modules

Induced modules

- Let V be an S-module and $U = 1 \uparrow_S^G = \langle T \rangle$ the permutation G-module with stabilizer S.
- $\overline{V} := V \otimes_K U$ is an $S \wr (G/N)$ -module via the action

 $(v \otimes t) \cdot (Ng, f) = (vf(t_g), t_g)$

The restriction of V
 from S
 (G/N) to G (via the kk embedding) is the induced module V
 ↑^G_S.

Induced modules

- Let V be an S-module and $U = 1 \uparrow_S^G = \langle T \rangle$ the permutation G-module with stabilizer S.
- $\overline{V} := V \otimes_K U$ is an $S \wr (G/N)$ -module via the action

$$(v \otimes t) \cdot (Ng, f) = (vf(t_g), t_g)$$

• The restriction of \overline{V} from $S \wr (G/N)$ to G (via the kk embedding) is the induced module $V \uparrow_S^G$.

Induced modules

- Let V be an S-module and $U = 1 \uparrow_S^G = \langle T \rangle$ the permutation G-module with stabilizer S.
- $\overline{V} := V \otimes_K U$ is an $S \wr (G/N)$ -module via the action

$$(v \otimes t) \cdot (Ng, f) = (vf(t_g), t_g)$$

The restriction of *V* from S ≥ (G/N) to G (via the kk embedding) is the induced module V ↑^G_S.

Sylow *p*-subgroup of
$$SL((p-1)p^{s-1}, \mathbb{Z})$$

Vol'vačev's result.

Theorem (Vol'vačev, 1967)

The iterated wreath product

$$W_s = \underbrace{C_p \wr \cdots \wr C_p}_{s \text{ times}}$$

is a p-Sylow subgroup of $SL((p-1)p^{s-1},\mathbb{Z})$

Main igredients of Vol'vačev's result.

Sketch of Vol'vačev's result

- If G is a finite p-group every Q(ξ)-irreducible representation (ξ a p-th root of 1) is monomial, i.e. it is induced by a linear one λ of a subgroup H.
- Find a composition setries S = G₀ ≤ ··· ≤ G_{s-1} = G and use iteratively the kk map to get an embedding of G in the group H ≥ C_p ≥ ··· ≥ C_p acting (unfaithfully) over Q(ξ)^{ps-1}.

s-1 times

 Possibly factoring out the kernel the representation we get an embedding of *G* in *W_s* acting on Q^{(p-1)p^{s-1}} ≅ Q(ξ)^{p^{s-1}} and the representation afforded is actually a ℤ-representation.

Main igredients of Vol'vačev's result.

Sketch of Vol'vačev's result

- If G is a finite p-group every Q(ξ)-irreducible representation (ξ a p-th root of 1) is monomial, i.e. it is induced by a linear one λ of a subgroup H.
- Find a composition setries S = G₀ ≤ ··· ≤ G_{s-1} = G and use iteratively the kk map to get an embedding of G in the group H ≥ C_p ≥ ··· ≥ C_p acting (unfaithfully) over Q(ξ)^{ps-1}.

s-1 times

 Possibly factoring out the kernel the representation we get an embedding of *G* in *W_s* acting on Q^{(p-1)p^{s-1}} ≅ Q(ξ)^{p^{s-1}} and the representation afforded is actually a ℤ-representation.

Main igredients of Vol'vačev's result.

Sketch of Vol'vačev's result

- If G is a finite p-group every Q(ξ)-irreducible representation (ξ a p-th root of 1) is monomial, i.e. it is induced by a linear one λ of a subgroup H.
- Find a composition setries $S = G_0 \leq \cdots \leq G_{s-1} = G$ and use iteratively the kk map to get an embedding of G in the group $H \wr C_p \wr \cdots \wr C_p$ acting (unfaithfully) over $\mathbb{Q}(\xi)^{p^{s-1}}$.

 $s-1 \ {\rm times}$

 Possibly factoring out the kernel the representation we get an embedding of *G* in *W_s* acting on Q^{(p-1)p^{s-1}} ≅ Q(ξ)^{p^{s-1}} and the representation afforded is actually a ℤ-representation.

Main igredients of Vol'vačev's result.

Sketch of Vol'vačev's result

- If G is a finite p-group every Q(ξ)-irreducible representation (ξ a p-th root of 1) is monomial, i.e. it is induced by a linear one λ of a subgroup H.
- Find a composition setries $S = G_0 \leq \cdots \leq G_{s-1} = G$ and use iteratively the kk map to get an embedding of G in the group $H \wr C_p \wr \cdots \wr C_p$ acting (unfaithfully) over $\mathbb{Q}(\xi)^{p^{s-1}}$.

 $s-1 {\rm \ times}$

 Possibly factoring out the kernel the representation we get an embedding of *G* in *W_s* acting on Q^{(p-1)p^{s-1}} ≃ Q(ξ)^{p^{s-1}} and the representation afforded is actually a Z-representation.

Outline

2 Modular Lie algebras

- Wreath products
- Inducing representations from a maximal *p*-ideals
- Kaloujnine Krasner Embedding
- Inducing representations from an ideal

The Lie ring of $G \wr C_p$

$L(G \wr C_p)$

C. Di Pietro noticed in her thesis (2005) that if the Lie ring of *G* is a Lie algebra over \mathbb{F}_p then

 $L(G \wr C_p) = (L(G) \otimes_{\mathbb{F}_p} A(1,1)) \rtimes \langle 1 \otimes D \rangle$

where

$$A(1,1) = \mathbb{F}_p(\epsilon^{(1)}, \dots, \epsilon^{(p-1)})$$

is the divided power algebra of height 1:

$$\begin{split} \epsilon^{(i)} \epsilon^{(j)} &= {i+j \choose j} \epsilon^{(i+j)} \\ \epsilon^{(0)} &:= 1 \\ \text{and} \\ D(\epsilon^{(i)}) &= \epsilon^{(i-1)} \end{split}$$

The Wreath Product $L \wr K$

$L \wr K$

It is then natural to define for a Lie algebra L over the field K (of characteristic p)

$$L \wr K = (L \otimes_K A(1,1)) \rtimes \langle 1 \otimes D \rangle$$

Note

Note that if V is an L-module then

 $Wr(V) := V \otimes_K A(1,1)$

has a natural structure of $(L \wr K)$ -module

The Wreath Product $L \wr K$

$L\wr K$

It is then natural to define for a Lie algebra L over the field K (of characteristic p)

$$L \wr K = (L \otimes_K A(1,1)) \rtimes \langle 1 \otimes D \rangle$$

Note

Note that if V is an L-module then

 $Wr(V) := V \otimes_K A(1,1)$

has a natural structure of $(L \wr K)$ -module

The Wreath Product $L \wr K$

$L\wr K$

It is then natural to define for a Lie algebra L over the field K (of characteristic p)

$$L \wr K = (L \otimes_K A(1,1)) \rtimes \langle 1 \otimes D \rangle$$

Note

Note that if V is an L-module then

$$Wr(V) := V \otimes_K A(1,1)$$

has a natural structure of $(L \wr K)$ -module

Outline

- Wreath products
- Inducing representations from a maximal *p*-ideals
- Kaloujnine Krasner Embedding
- Inducing representations from an ideal

A kk like embedding Di Pietro's work

Theorem (Di Pietro 2005)

Let *L* be a restricted Lie algebra and *I* a *p*-ideal of codimension 1 containing C(L). Suppose further that *V* is an *I*-module such that the induced representation $V \uparrow_I^L$ is faithful and has character *S* and that there exists an element $u \in C(L)$ acting as the identity on *V*. There exists an embedding $i: L \to I \wr (L/I)$ of (unrestricted) Lie algebras (possibly depending on the character *S*) such that

$$\operatorname{Wr}(V) \downarrow_{i(L)}^{R(L/I)} \cong V \uparrow_{I}^{L}.$$

A kk like embedding Di Pietro's work

Theorem (Di Pietro 2005)

Let *L* be a restricted Lie algebra and *I* a *p*-ideal of codimension 1 containing C(L). Suppose further that *V* is an *I*-module such that the induced representation $V \uparrow_I^L$ is faithful and has character *S* and that there exists an element $u \in C(L)$ acting as the identity on *V*. There exists an embedding $i: L \to I \wr (L/I)$ of (unrestricted) Lie algebras (possibly depending on the character *S*) such that

$$\operatorname{Wr}(V) \downarrow_{i(L)}^{I\wr(L/I)} \cong V \uparrow_{I}^{L}.$$

A kk like embedding Di Pietro's work

Proof.

Write $L = \langle x \rangle \oplus I$. The embedding is defined by

$$\begin{cases} x & \mapsto 1 \otimes D + (x^{[p]} + S(x)^p u) \otimes \epsilon^{(p-1)} \\ I \ni y & \mapsto \sum_{j=0}^{p-1} [y, \underbrace{x, \dots, x}_{j \text{ times}}] \otimes \epsilon^{(j)} \\ \end{cases}$$

Irreducible linear Lie algebras Absolute irreducibility

Definition

A representation $\rho: L \to \mathfrak{gl}(V)$ is said to be absolutely irreducible if any of the following equivalent conditions is true:

- ρ(L) generate gl(V) as associative algebra with unity
 C_{al(V)}(ρ(L)) = F · 1
- 3 $V \otimes_K E$ is an irreducible $(L \otimes_K E)$ -module for every field extension E/K.

Definition

Definition

A representation $\rho: L \to \mathfrak{gl}(V)$ is said to be absolutely irreducible if any of the following equivalent conditions is true:

- $\ \ \, \mathbf{0} \ \ \, \rho(L) \ \, \mathbf{generate} \ \, \mathfrak{gl}(V) \ \, \mathbf{as} \ \, \mathbf{associative} \ \, \mathbf{algebra} \ \, \mathbf{with} \ \, \mathbf{unity} \ \ \,$
- $c_{\mathfrak{gl}(V)}(\rho(L)) = F \cdot 1$
- 3 $V \otimes_K E$ is an irreducible $(L \otimes_K E)$ -module for every field extension E/K.

Definition

Definition

A representation $\rho: L \to \mathfrak{gl}(V)$ is said to be absolutely irreducible if any of the following equivalent conditions is true:

)
$$ho(L)$$
 generate $\mathfrak{gl}(V)$ as associative algebra with unity

$$C_{\mathfrak{gl}(V)}(\rho(L)) = F \cdot 1$$

3 $V \otimes_K E$ is an irreducible $(L \otimes_K E)$ -module for every field extension E/K.

Definition

Definition

A representation $\rho: L \to \mathfrak{gl}(V)$ is said to be absolutely irreducible if any of the following equivalent conditions is true:

$$\mathbf{O} \ \rho(L)$$
 generate $\mathfrak{gl}(V)$ as associative algebra with unity

$$2 C_{\mathfrak{gl}(V)}(\rho(L)) = F \cdot 1$$

• $V \otimes_K E$ is an irreducible $(L \otimes_K E)$ -module for every field extension E/K.

Definition

Definition

A representation $\rho: L \to \mathfrak{gl}(V)$ is said to be absolutely irreducible if any of the following equivalent conditions is true:

$$\mathbf{O} \ \rho(L)$$
 generate $\mathfrak{gl}(V)$ as associative algebra with unity

$$C_{\mathfrak{gl}(V)}(\rho(L)) = F \cdot 1$$

• $V \otimes_K E$ is an irreducible $(L \otimes_K E)$ -module for every field extension E/K.

Definition

$K\wr K$

The Lie algebra $K \wr K$ is generated over K by the p imes p matrices.

It has nilpotency class p and $\dim_K(L) = p + 1$, i.e. it is an algebra of maximal class. Moreover $c_{ij} = x^{p-i}yx^{j-1}$ so that the associative algebra generated by $K \wr K$ is $\mathfrak{gl}(p, K)$ i.e. $K \wr K$ is an irreducible Lie algebra. More generally $L \wr K$ is irreducible if L is, so that $\ell^n K$ is irreducible for all n.

$K\wr K$

The Lie algebra $K \wr K$ is generated over K by the $p \times p$ matrices

	(0)	1	0	• • •	0)	and $y =$	0	0	0	• • •	0)	
	0	0	1	•••	0		0	0	0	• • •	0	
x =	0	0	0	•.	0	and $y =$	0	0	0	••.	0	
	1:	÷	÷		1		1 :	÷	÷	••.	0	
	$\sqrt{0}$	0	0	•••	0/		$\backslash 1$	0	0	•••	0/	

It has nilpotency class p and $\dim_K(L) = p + 1$, i.e. it is an algebra of maximal class. Moreover $e_{ij} = x^{p-i}yx^{j-1}$ so that the associative algebra generated by $K \wr K$ is $\mathfrak{gl}(p, K)$ i.e. $K \wr K$ is an irreducible Lie algebra. More generally $L \wr K$ is irreducible if L is, so that $\ell^n K$ is irreducible for all n.

$K\wr K$

The Lie algebra $K \wr K$ is generated over K by the $p \times p$ matrices

$$x = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \text{ and } y = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

It has nilpotency class p and $\dim_K(L) = p + 1$, i.e. it is an algebra of maximal class. Moreover $e_{ij} = x^{p-i}yx^{j-1}$ so that the associative algebra generated by $K \wr K$ is $\mathfrak{gl}(p, K)$ i.e. $K \wr K$ is an irreducible Lie algebra. More generally $L \wr K$ is irreducible if L is, so that $\wr^n K$ is irreducible for all n.

$K\wr K$

The Lie algebra $K \wr K$ is generated over K by the $p \times p$ matrices

$$x = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \text{ and } y = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

It has nilpotency class p and $\dim_K(L) = p + 1$, i.e. it is an algebra of maximal class. Moreover $e_{ij} = x^{p-i}yx^{j-1}$ so that the associative algebra generated by $K \wr K$ is $\mathfrak{gl}(p, K)$ i.e. $K \wr K$ is an irreducible Lie algebra. More generally $L \wr K$ is irreducible if L is, so that $\wr^n K$ is irreducible for all n.

$K\wr K$

The Lie algebra $K \wr K$ is generated over K by the $p \times p$ matrices

$$x = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \text{ and } y = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

It has nilpotency class p and $\dim_K(L) = p + 1$, i.e. it is an algebra of maximal class. Moreover $e_{ij} = x^{p-i}yx^{j-1}$ so that the associative algebra generated by $K \wr K$ is $\mathfrak{gl}(p, K)$ i.e. $K \wr K$ is an irreducible Lie algebra. More generally $L \wr K$ is irreducible if L is, so that $\wr^n K$ is irreducible for all n.

Outline

Modular Lie algebras

- Wreath products
- Inducing representations from a maximal *p*-ideals

Kaloujnine Krasner Embedding

• Inducing representations from an ideal

The kk embedding

Kaloujnine Krasner embedding

The induced modules techniques provide a general formula for a Kaloujnine Krasner embedding. A different approach can be found in

Petrogradsky, V. M.; Razmyslov, Yu. P.; Shishkin, E. O. *Wreath products and Kaluzhnin-Krasner embedding for Lie algebras.* Proc. Amer. Math. Soc. 135 (2007), no. 3, 625–636.

The kk embedding

Kaloujnine Krasner embedding

The induced modules techniques provide a general formula for a Kaloujnine Krasner embedding. A different approach can be found in

Petrogradsky, V. M.; Razmyslov, Yu. P.; Shishkin, E. O. *Wreath products and Kaluzhnin-Krasner embedding for Lie algebras.* Proc. Amer. Math. Soc. 135 (2007), no. 3, 625–636.

The kk embedding

Kaloujnine Krasner embedding

The induced modules techniques provide a general formula for a Kaloujnine Krasner embedding. A different approach can be found in

Petrogradsky, V. M.; Razmyslov, Yu. P.; Shishkin, E. O. *Wreath products and Kaluzhnin-Krasner embedding for Lie algebras.* Proc. Amer. Math. Soc. 135 (2007), no. 3, 625–636.

Outline

Modular Lie algebras

- Wreath products
- Inducing representations from a maximal *p*-ideals
- Kaloujnine Krasner Embedding

Inducing representations from an ideal

Universal reduced *p*-enveloping algebras

Let *L* be a finite dimensional restricted Lie algebra, *I* a *p*-ideal of *L*. Suppose that *V* is a restricted *I*-module with character *S* and that u(L,S) and $u(I,S|_I)$ are the corresponding reduced universal *p*-enveloping algebras. We shall assume further that C(L) is a subalgebra of I containing an element *u* acting on *V* as the identity

Let (e_{k+1}, \ldots, e_n) be a basis of I such that

 $(e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$ is a basis of *L*. If $\tau = (p - 1, \ldots, p - 1)$ and $e = (e_1, \ldots, e_k)$, then (with multindex notation)

$$u(L,S) = \bigoplus_{\mathbf{a} < \tau} \mathbf{e}^{\mathbf{a}} u(I,S|_I)$$

Universal reduced *p*-enveloping algebras

Let *L* be a finite dimensional restricted Lie algebra, *I* a *p*-ideal of *L*. Suppose that *V* is a restricted *I*-module with character *S* and that u(L, S) and $u(I, S|_I)$ are the corresponding reduced universal *p*-enveloping algebras. We shall assume further that C(L) is a subalgebra of I containing an element *u* acting on *V* as the identity

Let (e_{k+1}, \ldots, e_n) be a basis of I such that $(e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$ is a basis of L. If $\tau = (p - 1, \ldots, p - 1)$ and $e = (e_1, \ldots, e_k)$, then (with multindex notation)

$$u(L,S) = \bigoplus_{\mathbf{a} \leq \tau} \mathbf{e}^{\mathbf{a}} u(I,S|_I)$$

Universal reduced *p*-enveloping algebras

Let *L* be a finite dimensional restricted Lie algebra, *I* a *p*-ideal of *L*. Suppose that *V* is a restricted *I*-module with character *S* and that u(L, S) and $u(I, S|_I)$ are the corresponding reduced universal *p*-enveloping algebras. We shall assume further that C(L) is a subalgebra of I containing an element *u* acting on *V* as the identity

Let (e_{k+1}, \ldots, e_n) be a basis of I such that $(e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$ is a basis of L. If $\tau = (p - 1, \ldots, p - 1)$ and $e = (e_1, \ldots, e_k)$, then (with multindex notation)

$$u(L,S) = \bigoplus_{\mathbf{a} \le \tau} \mathbf{e}^{\mathbf{a}} u(I,S|_I)$$

Frobenius extensions

Since I is an ideal, the map $\Lambda \colon u(L,S) \to u(I,S|_I)$ defined by $(j_{\mathbf{a}} \in u(I,S|_I))$

$$\Lambda\left(\sum_{\mathbf{a}\leq\tau}\mathbf{e}^{\mathbf{a}}j_{\mathbf{a}}\right)=j_{\tau}$$

is right and left $u(I, S|_I)$ -linear and surjective, indeed it makes $u(I, S|_I) \le u(L, S)$ into a Frobenius extension. As shown in Strade's book Simple Lie algebras over Fields of positive Characteristic, the map

 $\phi \colon u(L,S) \otimes_{u(I,S|_I)} V \to \hom_{u(I,S|_I)}(u(L,S),V)$

defined by $\phi(u \otimes v)(m) = \Lambda(um)v$ is an isomorphism of u(L, S) modules, so that it makes no difference in using induced or coinduced modules.

Frobenius extensions

Since I is an ideal, the map $\Lambda\colon u(L,S)\to u(I,S|_I)$ defined by $(j_{\mathbf{a}}\in u(I,S|_I))$

$$\Lambda\left(\sum_{\mathbf{a}\leq\tau}\mathbf{e}^{\mathbf{a}}j_{\mathbf{a}}\right)=j_{\tau}$$

is right and left $u(I, S|_I)$ -linear and surjective, indeed it makes $u(I, S|_I) \leq u(L, S)$ into a Frobenius extension. As shown in Strade's book Simple Lie algebras over Fields of positive Characteristic, the map

 $\phi \colon u(L,S) \otimes_{u(I,S|_I)} V \to \hom_{u(I,S|_I)}(u(L,S),V)$

defined by $\phi(u \otimes v)(m) = \Lambda(um)v$ is an isomorphism of u(L, S) modules, so that it makes no difference in using induced or coinduced modules.

Frobenius extensions

Since I is an ideal, the map $\Lambda\colon u(L,S)\to u(I,S|_I)$ defined by $(j_{\mathbf{a}}\in u(I,S|_I))$

$$\Lambda\left(\sum_{\mathbf{a}\leq\tau}\mathbf{e}^{\mathbf{a}}j_{\mathbf{a}}\right)=j_{\tau}$$

is right and left $u(I, S|_I)$ -linear and surjective, indeed it makes $u(I, S|_I) \le u(L, S)$ into a Frobenius extension. As shown in Strade's book Simple Lie algebras over Fields of positive Characteristic, the map

$$\phi \colon u(L,S) \otimes_{u(I,S|_I)} V \to \hom_{u(I,S|_I)} (u(L,S),V)$$

defined by $\phi(u \otimes v)(m) = \Lambda(um)v$ is an isomorphism of u(L,S) modules, so that it makes no difference in using induced or coinduced modules.

The coinduced module

The coinduced module

There are canonical K-isomorphisms

 $\begin{aligned} &\hom_{u(I,S|I)}(u(L,S),V) &\cong &\hom_{K}(u(L/I),V) \\ & (V \text{ finite dimensional}) &\cong &\hom_{K}(u(L/I),K) \otimes_{K} V \end{aligned}$

Derivation algebras

Well known: $\hom_K(u(L/I), K) \cong A(k, 1)$ is a divided power algebra on k variables and L/I acts on it as a (special) derivation algebra.

Define the structure

Now we use the previous *K*-isomorphisms to transfer the coinduced action on $hom_K(u(L/I), V)$.

The coinduced module

The coinduced module

There are canonical K-isomorphisms

 $\hom_{u(I,S|I)}(u(L,S),V) \cong \hom_{K}(u(L/I),V)$

(V finite dimensional) $\cong \hom_K(u(L/I), K) \otimes_K V$

Derivation algebras

Well known: $\hom_K(u(L/I), K) \cong A(k, 1)$ is a divided power algebra on k variables and L/I acts on it as a (special) derivation algebra.

Define the structure

Now we use the previous *K*-isomorphisms to transfer the coinduced action on $hom_K(u(L/I), V)$.

The coinduced module

The coinduced module

There are canonical K-isomorphisms

 $\hom_{u(I,S|I)}(u(L,S),V) \cong \hom_{K}(u(L/I),V)$

(V finite dimensional) $\cong \hom_K(u(L/I), K) \otimes_K V$

Derivation algebras

Well known: $\hom_K(u(L/I), K) \cong A(k, 1)$ is a divided power algebra on k variables and L/I acts on it as a (special) derivation algebra.

Define the structure

Now we use the previous *K*-isomorphisms to transfer the coinduced action on $hom_K(u(L/I), V)$.

The wreath product

The wreath product

For A and B restricted Lie algebras define

 $A \wr B := B \ltimes \hom_K(u(B), A)$

where (b'f)(b) = f(bb'), for $f \in \hom_K(u(B), A)$ and $b' \in B$.

Lie products in $\hom_K(u(B), A)$

For $f, g \in \hom_K(u(B), A)$ the lie product [f, g] is the map defined as $[f, g](u) = \sum [f(u_1), g(u_2)]$, in Sweedler's notation (being $\sum u_1 \otimes u_2$ the comultiplication of u in the Hopf algebra u(B)).

The wreath product

The wreath product

For A and B restricted Lie algebras define

 $A \wr B := B \ltimes \hom_K(u(B), A)$

where (b'f)(b) = f(bb'), for $f \in \hom_K(u(B), A)$ and $b' \in B$.

Lie products in $\hom_K(u(B), A)$

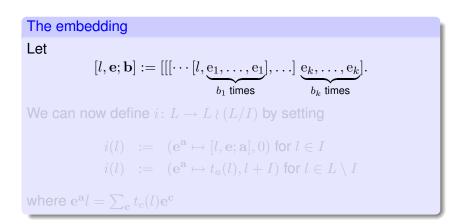
For $f, g \in \hom_K(u(B), A)$ the lie product [f, g] is the map defined as $[f, g](u) = \sum [f(u_1), g(u_2)]$, in Sweedler's notation (being $\sum u_1 \otimes u_2$ the comultiplication of u in the Hopf algebra u(B)).

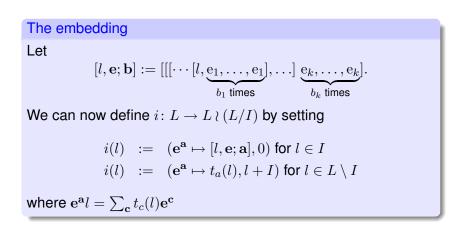
The wreath product

The action

Clearly $I \wr (L/I) = (L/I) \ltimes \hom_K(u(L/I), I)$ acts on $\hom_K(u(L/I), V)$. Note that for $g \in \hom_K(u(L/I), I)$ and $f \in \hom_K(u(L/I), V)$ one has

$$(g \cdot f)(\mathbf{e}^a) = \sum_{\mathbf{b} \leq \mathbf{a}} {\mathbf{a} \choose \mathbf{b}} g(\mathbf{e}^{\mathbf{b}}) f(\mathbf{e}^{\mathbf{a}-\mathbf{b}})$$





Remark

- This embedding can be described in terms of divided powers (extends Di Pietro's result): hom_K(u(L/I), V) ≅ A(k, 1) ⊗_K V.
- We have the induced (coinduced) module result:

 $\hom_K(u(L/I), V) \downarrow_{i(L)}^{R(L/I)} \cong V \uparrow_I^L.$

Remark

- This embedding can be described in terms of divided powers (extends Di Pietro's result): hom_K(u(L/I), V) ≅ A(k, 1) ⊗_K V.
- We have the induced (coinduced) module result:

$$\hom_K(u(L/I), V) \downarrow_{i(L)}^{R(L/I)} \cong V \uparrow_I^L.$$

Vol'vačev statement for Irreducible nilpotent linear Lie algebras

A linear (absolutely) irreducible nilpotent Lie algebra L over a perfect field K is a subalgebra of $\ell^n K$ for some n.

Sketch of the proof (close to Strade Farnsteiner book section. 5.8)

- WLOG we can assume $L \leq \mathfrak{gl}(V)$ restricted and non-abelian
- As L is nilpotent there is a non-central abelian ideal $A \trianglelefteq L$ containing C(L)
- Since for $a \in A$ we have $[l, a^{p^h}] = [l, a, \dots, a] = 0$ so that

 a^{p^h} is central (*h* large enough), hence both a^{p^h} and *a* have eigenvalues in *K*

Sketch of the proof (close to Strade Farnsteiner book section. 5.8)

- WLOG we can assume $L \leq \mathfrak{gl}(V)$ restricted and non-abelian
- As L is nilpotent there is a non-central abelian ideal $A \trianglelefteq L$ containing C(L)
- Since for $a \in A$ we have $[l, a^{p^h}] = [l, a, \dots, a] = 0$ so that

 a^{p^h} is central (*h* large enough), hence both a^{p^h} and *a* have eigenvalues in *K*

Sketch of the proof (close to Strade Farnsteiner book section. 5.8)

- WLOG we can assume $L \leq \mathfrak{gl}(V)$ restricted and non-abelian
- As L is nilpotent there is a non-central abelian ideal $A \trianglelefteq L$ containing C(L)

• Since for
$$a \in A$$
 we have $[l, a^{p^h}] = [l, \underbrace{a, \dots, a}_{p^h \text{ times}}] = 0$ so that

 a^{p^h} is central (h large enough), hence both a^{p^h} and a have eigenvalues in ${\cal K}$

Sketch of the proof (close to Strade Farnsteiner book section. 5.8)

- WLOG we can assume $L \leq \mathfrak{gl}(V)$ restricted and non-abelian
- As L is nilpotent there is a non-central abelian ideal $A \trianglelefteq L$ containing C(L)

• Since for
$$a \in A$$
 we have $[l, a^{p^h}] = [l, \underbrace{a, \dots, a}_{p^h \text{ times}}] = 0$ so that

 a^{p^h} is central (h large enough), hence both a^{p^h} and a have eigenvalues in ${\cal K}$

- Since *L* is absolutely irreducible, there exists a character for *V*
- *V* is induced from an absolutely irreducible module of the proper subalgebra $L^{\lambda} = \{l \in L \mid \lambda([l, a]) = 0 \; \forall a \in A\}$
- By induction there exists a subalgebra $Q \le L$ such that V is induced by a 1-dimensional Q-module
- Refine Q ≤ L to a composition series and induce V stepwise with a KK-embedding at each step

- Since *L* is absolutely irreducible, there exists a character for *V*
- *V* is induced from an absolutely irreducible module of the proper subalgebra $L^{\lambda} = \{l \in L \mid \lambda([l, a]) = 0 \; \forall a \in A\}$
- By induction there exists a subalgebra $Q \le L$ such that V is induced by a 1-dimensional Q-module
- Refine Q ≤ L to a composition series and induce V stepwise with a KK-embedding at each step

- Since *L* is absolutely irreducible, there exists a character for *V*
- *V* is induced from an absolutely irreducible module of the proper subalgebra $L^{\lambda} = \{l \in L \mid \lambda([l, a]) = 0 \ \forall a \in A\}$
- By induction there exists a subalgebra Q ≤ L such that V is induced by a 1-dimensional Q-module
- Refine Q ≤ L to a composition series and induce V stepwise with a KK-embedding at each step

- Since *L* is absolutely irreducible, there exists a character for *V*
- *V* is induced from an absolutely irreducible module of the proper subalgebra $L^{\lambda} = \{l \in L \mid \lambda([l, a]) = 0 \ \forall a \in A\}$
- By induction there exists a subalgebra Q ≤ L such that V is induced by a 1-dimensional Q-module
- Refine Q ≤ L to a composition series and induce V stepwise with a KK-embedding at each step